NASA/TM-2005-213934

Design of the Protocol Processor for the
ROBUS-2 Communication System

Wilfredo Torres-Pomales, Mahyar Malekpour and Paul S. Miner
Langley Research Center, Hampton, Virginia

November 2005

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

e Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

¢ E-mail your question via the Internet to
help@sti.nasa.gov

¢ Fax your question to the NASA STI Help Desk
at (301) 621-0134

e Phone the NASA STI Help Desk at
(301) 621-0390

e Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2005-213934

Design of the Protocol Processor for the
ROBUS-2 Communication System

Wilfredo Torres-Pomales, Mahyar Malekpour and Paul S. Miner
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 2005

Acknowledgement

This work was supported, in part, by the FAA William J. Hughes Technical Center under
interagency agreement DTFA03-96-X90001.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Abstract

The ROBUS-2 Protocol Processor (RPP) is a custom-designed
hardware component implementing the functionality of the ROBUS-2
Sfault-tolerant communication system. The Reliable Optical Bus (ROBUS)
is the core communication system of the Scalable Processor-Independent
Design for Enhanced Reliability (SPIDER), a general-purpose fault-
tolerant integrated modular architecture currently under development at
NASA Langley Research Center. ROBUS is a time-division multiple
access (TDMA) broadcast communication system with medium access
control by means of time-indexed communication schedule. ROBUS-2 is
a developmental version of the ROBUS providing guaranteed fault-
tolerant services to the attached processing elements (PEs), in the
presence of a bounded number of faults. These services include message
broadcast (Byzantine Agreement), dynamic communication schedule
update, time reference (clock synchronization), and distributed diagnosis
(group membership). ROBUS also features fault-tolerant startup and
restart capabilities. ROBUS-2 tolerates internal as well as PE faults, and
incorporates a dynamic self-reconfiguration capability driven by the
internal diagnostic system. ROBUS consists of RPPs connected to each
other by a lower-level physical communication network. The RPP has a
pipelined architecture and the design is parameterized in the behavioral
and structural domains. The design of the RPP enables the bus to
achieve a PE-message throughput that approaches the available
bandwidth at the physical layer.

il

v

Table of Contents

INOTALION ..ttt ettt e at e e sb et e eat e e b et e su b e e bt e e bt e e bt e e st e e bt e e bt e e bt e e beeea bt e ebee e be e e bae e bt e enbte e beeenbaeeane XV
J O 6415 0T Lot o) | O OO OO O ST P PO PR TSP 1
2. Overview of the ROBUS-2 commUuNiCation SYSIEIMccueeouiruiriirieniieiieteeiesieenieese e eneseesaee e e s esneeenesanesaeennees 3
2.1.1. SYSEEIM SLIUCLULE........eeutiiieiieieeieete ettt ettt ettt et eae e st et et et e s e e e e saeesate st ess e eaneeanesssesaeeseenseeanesanesanenae 3
2.1.2. Distributed COOTAINAtIONocuiriiiiiriiiiieieieiertiee sttt ettt st et ne e s b st naes 4
2.1.3. RedundancCy MAanQ@EIMENLcc.ceuertirutirteniieieeteeiteetteetteste et eteeaesaeesbeesbee bt enbeeateeatesbsesbeenbeenbeensesnaesaeenae 5
2.1.4. Operational MOAEScc.eeruiertieriiiieiie ettt ettt sttt et ettt sbtesbe e bt et e eateeatesbsesbeenbeenbeenbesaaesaaenae 6
2.1.4.1. CHQUE PIrESEIVALION. ...cutiitiiiiiiieiiieiteeitestt ettt ettt et sttt et e bttt et saeesbee bt e b e e bt eabesatesbeesbeenbeenseenneeas 6

2 142, SEI-TESE ittt sttt et et a b e bt et nens 7
2.1.4.3. CHQUE DELECTION ..ottt ettt ettt sttt et e bttt et s bt b e e bt e bt e bt eabesatesbeesbeenaeenseenneaas 7
2.1.4.4. CHQUE JOIN ...ttt ettt et et sttt ettt e s e st e b e et eneeanesanesaeesneeaeenneennens 7
2.1.4.5. Clique INItIAlIZATION ...c.eiruiiiiiiieiieieee ettt ettt ettt ettt e eane s e e saeesaeesaeenneenneeas 8
2.1.5. ROBUS MESSAZES ...evverueemiieniierietenieniteritesttett et eseeeieesteeste e st esseenesanesaeesatestesseemaeeanesasesseeseenseeanesanesanenae 8
2.1.6. Point-to-point COMMUINICATIONeouiriiiriieiieiteti ettt ettt ea et e e e e e saeesbe e beesneeanesanesanenaee 9
2.1.7. COMMUNICAtION PALLEITISeuriereireiietiete et etteeteesteeat e et eanesanesaee s et esseesseeaseesaesseeseesseemnesanesanesaeesseenseennens 10
2.1.7.1. ColIECtiVe DIAZNOSISeeuvieurieiiieiieeiieitee ettt ettt ettt et et e s st st e et e st e e e s e e enneen 10
2.1.7.2. SChedUIE UPAALEeouiiiiiiieiieeiieeitetee ettt ettt et et ettt sate st e et et eatesaaesbeenbeenbean 10
2.1.7.3. PE BIOAACAST.cuviiiiiriiiiiiiieiicetee sttt sttt st s et s e st 11
2.1.7.4. Accusation EXCRANGE........coouiiiiiiiiiiiiiieeece sttt st sttt et s s 12
2.1.7.5. Synchronization PreSEIrVAtiONcoeeieeriiiiiiiiiiieniteie ettt ettt ettt st sae ettt sbeesbeenbeas 12
2.1.7.6. Local DiagnosisS ACQUISIHIONc...ertertiertirriiiieiie ettt ettt ettt et et st st sbee et et eateeaeesbeenbeenbeas 13
2.1.7.7. Synchronization ACQUISITION.........cccueruiiriieiiiriieiiertent ettt ettt e st sa e eene e s e neenees 13
2.1.7.8. Collective Diagnosis ACQUISIHON.c..cccuteiuiriiiriiiiieniieii ettt st 14
2.1.7.9. INItial DIAGNOSIScevieiieiieiiieitieiteete ettt sttt ettt ettt et et e s st et e et esn e e e e e e ne s 14
2.1.7.10. Initial SYNCAIOMIZATION.c..oociiiiiiiiiieiieie ettt st 14

3. TIMING MOAEIS ...ttt et et et s st e s st et e sa e se e eae et e e be e e eanesanesanenae 17
3.1. Physical oscillators and 10cal-time CIOCKScc.cociiiiiiiiiiiiiiiiiiieete e 17
3.2. Drift rate of a clock signal generated by a frequUency divVIdercocceveeriieriiriiinienienieeeese e 18
3.3. Paths to SEIf-TeSt MOMEc.eoiiiiiiiiiiiciieieteteee et st et ebe e ene 18
33T SEATTUP ettt ettt et et e a e bbbttt e a e s bt bt b e e bt e a bt ea et e bt e bt e bt e bt e b eatesbeesbee bt e bt eateeae 19
332 RESTAIT .ttt et b e b e et b e sae bt et et aesae bt et e nen 19
34, SEIf-TESE MOTEC......c..oiiiiiieiieiieieerteee ettt st et s e bt st et e ae e b saeebe e ennene 19
3.5. CliqUue DEteCtion MOMGEccueeiiriiriiiriiirieenieete ettt ettt ettt st sbtesbe et e e at e ea e sbee bt e bt enbeeabesatesbeesbeenbeenteeneeans 20
3.6. InitialiZAtiON MOAEooueiiieiieiiiie ittt ettt et e e e b e bt e e s e sane st e saee st enneenneeas 21
3.7. Synchronized time-trig@ered OPEIALION.ccuiiuiriiriietieieete ettt ettt et te et ereenesenesaeesaeeneesneenneens 22
3.8. Communication MOAUIEcc.cociiiiiiiiiii ettt s st s eae e eaneeas 23
3.9. Computation MOGUIEcocuiiiiiiiiiieiiet ettt sttt ettt ettt et e e s sane st e saeeneesneenneeas 23
3.9.1. COmMPULALION PTOCESSeoviiiiiiiiiiiiieitcit ettt ettt eaeene e ens 24
3.9.1.1. RECEPHON STAZEceveeniieiieiireeiie ittt ettt ettt ettt ettt e bttt e e e s b et e e e eanesenesanesaeesneenaeennens 24
3.9.1.2. COMPULALION STAZE....c.veeteriririteriterteettett ettt et eb et sbtesbtesbee bt et e eateebtesbe e bt enbeeabessaesbtesbeenbeenseensenns 24
3.9.1.3. Timing model for synchronization ProtoColS..........c..cevueriirierieriiniriinieneeneeeere ettt 24
3.9.1.4. Timing model for the Synchronous ProtoCOLScecueiiirierieniiniieienieneeeee ettt 24
3.0.2. SEINA PIOCESScuviiiiiiiciicieteesteet ettt sttt s bt e b st 25
3.9.2.1. Timing model for the synchronization protoColscccccruereerieniiriiinienieneeeee et 25
3.9.2.2. Timing model for the Synchronous protoCoLScccceecuirierieniiniieiineeceee e 25
3.9.3. Constraint on the data introduction interval for the Computation Modulec..cccceviriiniinenieniennns 25
310 PE INEETTACE ...t sttt et ettt et e e anesane st e saeenneenneennens 25

4. POINt-tO-POINt COMMUINICATION ...cuveeuiiiuiiretenttentietteteete et st steeste et et eateete e s bt e bt e bt esbeeaaesbtesbeesbeenbeenteenbesasenbeenbeenbeen 27

4.1. Synchronization of asynchronous SIZNALScoviiruiiiiiiiniiniieeeet ettt et 27
4.2. Single-message COMMUIICALION.c..ieuirirerietieteeteete et eteeteeeeeeaeeste e re et eseesnesanesaeesaeeneenneesseennesnnesueennees 28
4.2.1. RECEPHON AEIAYeeviiiiiiiiieiiee ettt ettt e e s st st ae et e e s s e sneeneen 29
4.2.2. Estimate of the local-time at the SOUICEcccirviiiiiriiiieiieiieeeeee et 30
4.2.3. Expected local time Of TECEPLION......cc.eiiuiiriiiiiiiiiie ittt et 30
4.3. Coordination for synchronous COMMUNICAION..........cocuerieruieriieriietieiteee et ete e s st eneeseeenne e aeennees 32
4.4, MESSAZE SLIBAIMIS ...c..oeereereiieniiente et et et e st e bt e st esseenesaeesatesaee st esaeesseeusesse e st en st easeeanesanesaeesaeenstemneesseennesnneseennees 34
4.4.1. MeSSAZE AEIIVETY TALE ...c..eeiieniieiiieitieitettet ettt sttt ettt et s bt bt e bt e bt eabe s atesbtesbe e bt et e eateebaesbeenbeenbeas 34
4.4.2. Expected 10cal timME Of TECEPLION.ecutirtiiriieieetiiie ittt ettt ettt ettt ettt sbe et ettt eaaesbeenbeenbees 36
4.4.3. MESSAZE TECEPLION TALC......eeuveeuiieutieiieetietieteete et et sttesbeentee bt eateebtesbee bt e bt esbeeabesatesbeesbeebeenteenteesaenbaenbeenbeas 36
4.4.3.1. Non-overlapping reception iNEIVALS.........cooievuiriiriinieniieieeeete ettt ettt s s 37
4.4.3.2. Overlapping reCePtion INEEIVALSc.cueriiriiriiiitieieetenttert ettt sttt ettt ettt e e e e e aesaee e 37
4.4.4. Load size for a message reception DUTTEr.........cccouiiiiiiiiiiiiiiiiicece e 37
4.4.4.1. Combined message synchronization and bufferingccccoceriininiiiiniiniineneecceee e 37
4.4.4.2. Separate message synchronization and bufferingc.cocceooiiiiiininiiiiiiceee e 39

5. Clock synchronization PrOTOCOLSc.couirieriiiitieiieieee ettt ettt ettt e sat et ee e eanesanesanesaeesneenneennens 41
5.1. Clock SynChIrONIZAatioN SYSTEIMccueeruieruieruieiieitieiteeieete et ete e st e st esateseeseeeaaeeseesbe e beesseeanesanesaeesaeesseenseennens 41
5.2.5ta88 L PO O Pl..eeoiee ettt ettt et et ne s s st en e e enneeas 44
5.2.1. Expected time of reception for process P1cccooiiiiiiiiiiiiiieeeeee e 44
5.2.2. Bound on the observed relative skew of received messages for process Plc..ccccceveriiniineninncnnenns 44
5.2.3. Relative skew of the Accept outputs for process PL.........cooiiiiiiiiiiniiiiiiiiieeeeeeee e 45
5305180 2: P10 P2ttt et h e bbbt et st st e bt et e bt et eae 46
5.3.1. Effective reception delay for Process P2 ..ottt 46
5.3.2. Expected time of reception for Process P2cocuoiiiiiiiiiiiiiiiiieeceetetee e 47
5.3.3. Bound on the observed relative skew of received messages for process P2............ccccccceoviniincnnninnnns 48
5.3.4. Relative skew of the Accept outputs for process P2.........cccooiiiiiniiiiiiiiieceeeec e 48
S5.4.5ta80 3: P20 P3..oce ettt et a e a e e eas 49
5.4.1. Effective reception delay for process P3 ..o 49
5.4.2. Expected time of reception for process P3cccooiiiiiiiiiie e 50
5.4.3. Bound on the observed relative skew of received messages for process P3...........cccccocceeiiniininnninnnns 50
5.4.4. Relative skew of the Accept outputs for process P3......cc.cooiiiiiiiiiiiiiiieeeeeee e 51
5.5. 5180 4: P3O Pttt et h bbbt et sb bbbt et e et et eae 51
5.5.1. Effective reception delay fOr Process P4co.oooiiiiiiiiiiiiiiieiteetec ettt 52
5.5.2. Expected time of reception for Process P4ccoooiiiiiiiiiiiiiiieteeceeeteteeee et 53
5.5.3. Bound on the observed relative skew of received messages for process P4cccccevevvinienenincnnenne 53
5.5.4. Relative skew of the Accept outputs for process P4cocoiiiiiiniiiiiiiiiiieceeece e 54
5.6. SyNCRIrONIZAtION CAPLULEc..eeuriiiiiiiieiieiiett ettt ettt ettt ete s st e bt esn e et e e e e s et e e b e eanesanesanesaeesaeesseenneennens 54
5.6.1. Bound on the observed relative skew of received messages for process P3Cccccoviiiinieniininnnns 55
5.6.2. Relative skew of the Accept outputs for process P3C ..ot 55
5.6.3. Bound on the observed relative skew of received messages for process P4Ccccccocirvinieniininnnns 55
5.6.4. Relative skew of the Accept outputs for process PACcocooiiiiiiiiiiiiiceceeeee e 55
5.7. Resetting the 10Cal tME.......ccc.eiiiiiiiiiiiiiceet ettt et sb ettt sbtesbeesbeenbeebeeaeeene 56
5.7.1. Relative skew of the local-time reset for Process P4c.cccoceiiiniiiiiiiiiiniiieeeeeeee e 56
5.7.2. Relative skew of the local-time reset for process PAC..........coccoviiriiiiiiiiiiniinieneeeeeseesteseeeee e 56
5.7.3. Reset delay for ProCess P3 ... oottt et sttt et et et 57
5.7.4. Relative skew of the local-time reset between processes P3, and P4 or PACcccccooiiiniiniininnnnne 58
5.7.5. Relative skew of the local-time reset for process P3cccccooiiiiiniiniiiiiiinieeeeece e 58
5.7.6. Relative skew of the local-time reset for process P3C..........coccooiiiiiiiiiiiiiniiciceceeeeeeeeee e 58
5.7.7. Reset delay for ProCess P2co..oiiiiiiii et 59
5.7.8. Relative skew of the local-time reset between processes P2, and P3 or P3Cc.coccooiiiiniinininnns 60
5.7.9. Relative skew of the local-time reset for process P2coccooiiiiiiiiiiiiiniiceccceeeeeeee e 60
5.7.10. Relative skew of the local-time reset for a set including processes P2 and P3C ... 61
5.7.11. Relative skew of the local-time reset for a set including processes P2 and P3.............cccoooniiinnins 61
5.7.12. Relative skew of the local-time reset for a set including processes P2 and PACcccccoveniininninnns 61

vi

5.7.13. Relative skew of the local-time reset for a set including processes P2 and P4.........ccccooceiiniininnnnns 62

5.7.14. Relative skew of the local-time reset for a set including processes P3 or P3C.........ccocoviiiininiinnnens 62
5.7.15. Relative skew of the local-time reset for a set including processes P3 and P4Cc.coccooiniinines 62
5.7.16. Relative skew of the local-time reset for a set including processes P3 and P4.............cccoconininininss 63
5.7.17. Relative skew of the local-time reset for a set including processes P3C and P4C................c.ccoceieiees 63
5.7.18. Relative skew of the local-time reset for a set including processes P4 and P4Cc.ccocenininnes 64
5.7.19. Relative skew of the local-time reset for a set including all the synchronizing nodes..........c...c..cccceueeee 64
5.8. Relative local-time Skews fOr SOUICE-TECEIVET PAILSc..eecveeiirruiriiriieniietiete ettt et ere s s saeesaeene e ens 65
5.8.1. Duration of the synchronization protoCol €XECULIONc..ceuerieriirieriieiietenitenitenieenie ettt seee e enieeeeeas 65
5.8.2. Bounds on the resynchronization Period............couerierieeriiiirienteneenieeie ettt ettt s e e eas 66
5.8.3. Relative skew between P2-synchronized BIUs and P3- or P3C-synchronized RMUs..........ccccccoeenieenne 67
5.8.4. Relative skew between P3-synchronized RMUs and P4- or P4C-synchronized BIUs...........c.cccocceveennne 67
5.8.5. Bound on the relative local-time skew for all the nodes executing the synchronization protocol.............. 68
5.8.6. Generic relative local-time skew between sources and receivers for synchronous communication.......... 68
5.9. Specifying the Computation Process and Send Process delaysccocooieviieiiniinienieniininicieeneeneeeeene 68
5.9.1. Computation Process dEIAYSc.coieriiiiiiiiieiiiieieicee ettt ettt ettt 69
5.9.2. Send ProCess dRLAYSc..coouiiiiiiiiieiieree ettt ettt e e st a e neeaneeas 70
5.9.2.1. Send delay for process PO.........cooooiiiiiiiiiiiec e 72
5.9.2.2. Send delay for Process PL.........ooiiiiiiiiieee et 74
5.9.2.3. Send delay fOr Process P2.........coviiiiiiiiii e 75
5.9.2.4. Send delay fOr ProCess P3.....co..o ittt et 75
5.10. Additional CONSIAETALIONSccuiruiruiriieiiiieieietie sttt sttt ettt s st sa e b s eae e esnene 76
5.10.1. Frame SyNCRIONMIZATIONccueiiiiiiiiiintieiieteeiteettest ettt sttt ettt ettt s b e sb e b et eatesbeesbeesbeeteeateeas 76
5.10.2. Executing Synchronization Preservation after Synchonization AcquUiSition..........cccceveevuereereeneenennnene 77
5.10.3. Time service accuracy for the Synchronization Preservation protocol..........cc.cceeeververvicnienceneenennienns 78

6. Clique Preservation MOGE..........cc.eeuiiiiiiiiieiieti ettt sttt ettt s e st e b eeneeanesanesanesaeeneesneennens 81
6.1. Collective DIiagnosis ProtoCO]coccoiiiiiiiiiiiiiiiicicecece ettt s st s 82
6.1.1.Stage L: PO 10 Pl ettt ettt et e e st e e ae e eaneens 82
6.1.1.1. Communication between processes PO and P1...........c.ccoooiiiiiiiiiiiiiceeeeeee 82
6.1.1.2. Computation in ProCess Plcc.coiiiiiiiiiiiie et 83
6.1.2.Stage 2: P1 IO P2 ettt 83
6.1.2.1. Communication between processes P1 and P2ccccooiiiiiiiiiiiiiiincecceceeeeen 83
6.1.2.2. Computation in PrOCESS P2couiiiiiiiiiiiiieiie ettt sttt e e be s 84
6.1.3. St 3: P2 10 P3 ..ttt et sttt e ettt et eae 85
6.1.3.1. Communication between processes P2 and P3...........cccccooiiiiiiiiiiniiiceceeeeen 85
6.1.3.2. Computation in PrOCESS P3oouiiiiiiiiiiiieie ettt et s 86
0.1.4. Stage 4: P30 Pttt et ettt st st ae et et eae 86
6.1.4.1. Communication between processes P3 and P4 ... 86
6.1.4.2. Computation in ProCESS P4cc..ooiiiiiiiiiiiieet ettt 87
6.1.5. Duration Of the ProtOCOL..........cocuiiiiiiiiiiiii ettt e et 87
6.2. Schedule Update ProtoCOL..........cocuiiiiiiiiioiiei ettt ettt s s eneene e eas 88
6.2.1.Stage L1 PO 10 Pl ettt ettt e s st s aeen e e eae 88
6.2.1.1. Communication between processes PO and P1........c..coccooiiiiiniiiiiiiiniiiiicecceceeeeeen 89
6.2.1.2. Computation in PrOCESS Plcoiiiiiiiiiiiiiieiietee ettt et 90
0.2.2.Sta0 2: P10 P2ttt st sbe ettt 90
6.2.2.1. Communication between processes P1 and P2cccccooiiiiiiiiiiiiiiiiiiieceeeeee 90
6.2.2.2. Computation in PrOCESS P2coiiiiiiiiiiiiiieiieeteet ettt sttt et s 91
0.2.3. 5188 3: P2 10 P3 .ottt ettt st sbe ettt et eae 91
6.2.3.1. Communication between processes P2 and P3 ... 91
6.2.3.2. Computation in ProCess P3ccoooiiiiiiiiie e 93
6.2.4.Stage 4: P3O PA ..ot s s sttt 93
6.2.4.1. Communication between processes P3 and P4 ... 93
6.2.4.2. Computation in PrOCESS P4cc..ooiiiiiiiiiiii et 95
6.2.5. Duration Of the ProtoCOL..........cociiiiiiiiiiiiiiiee ettt ettt et e 95
6.3. PE Communication and Accusation Exchange Protocols..........ccocerieriiiiiniiniiniinieeeieniceeneeseeceeeeeee 95

vii

6.3.1. Scheduled PE messages in stage 1: PO t0 P1cociiiiiiiiiiiiieeeeeee e 96

6.3.1.1. Communication between processes PO and P1........c..cccccoiiiiiiiiiiiniiniiiecececeeeeeeen 96
6.3.1.2. Computation in ProCess Plcc.oooiiiiiiiiiiii et 97
6.3.2. Scheduled PE messages in stage 2: P1 t0 P2cccooiiiiiiiieeeeeee e 98
6.3.2.1. Communication between processes P1 and P2cccoiiiiiiiiiiiceeeeeen 98
6.3.2.2. Computation in ProCeSSs P2cc.coiiiiiiiiiiiiiie ettt 99
6.3.3. Accusations message in stage 1: PO to Ploccooiiiiiiieeeee e 99
6.3.3.1. Communication between processes PO and P1............c.cooooiiiiiiiiiiiiiceeeeeeee 99
6.3.3.2. Computation in ProCess Plcccooiiiiiiiiiiiiiiie ettt st 100
6.3.4. Accusations message in stage 2: P1 t0 P2cooiiiiiiiiiiiiiiieee e e 100
6.3.4.1. Communication between processes P1 and P2ccoccooiiiiiiiiiiniiniiceeeeeeee 101
6.3.4.2. Computation in PrOCESS P2cccuiiiiiiiiiiiieiieeee ettt st st st 102
6.3.5. DUration Of the PrOtOCOL.......cc.eivuiiriiiiiiieiie ettt ettt ettt et s s 102
6.3.6. Bound on the number of PE MESSAZES........ccc.eiiiiiiiiiiiiiiieiieieecec et 102
6.3.7. PE MESSAZE LALENCYeeruieiiiiiiiiiieiie ettt ettt ettt et et e s 103
6.4. Synchronization Preservation ProtOCOL..........c..cooiiiiiiiiiiiiiiiieiecccee et s 103
6.5. Miscellaneous CONSIAETALIONSccc.eeiiriiriertieiieti ettt et ettt e bt et e e e e e st et e beesneeanesanesanenaee 103
6.5.1. Time gap between Sync Reset and Collective DIagnosiscoceevuerierieniieniieiiieienieneeeereere e 103
6.5.2. Time gap between Collective Diagnosis and Schedule Update............c.cceeeviiiiiniiiniinieniniineneceee 104
6.5.3. Time gap between Schedule Update and PE CommuniCation.............ccoceevuieviieiiieienienieneeieeresee e 104
6.5.4. Time gap between PE Communication and Synchronization Preservationc..cceceeceeveenenncnncnnene. 104
T SEIf-TESE INOMC.......eoiiiiiiiiieiieietetet ettt s b ettt a b st e b s bt e st et esseae s s e besaeeuesueennennens 107
7.1. Bound on the relative time skew at the beginning of the Self-Test mode..........ccoceeveevervienieniennncnieneee 107
7.1.1. POWET-0NE ENADIE.......ocuiiiiiiiiiiiiiiiriieiece et sttt s ettt s be st e 107
7.1.2. Local failure or bus fallUre.........ccccoiiiiiiiiiiiiiiiiecccece et st 107
7.2. Duration of the Self-TeSt MOAEcceeiiiiiiiiiiiieic ettt e 108
7.3. Bound on the relative local-time skew at the end of the Self-Test mode...........ccccoeeieviieiiiniienienieicnicneee. 109
8. Clique DeteCtion MOMEcoouieiiiiieiiieiiieiieitete ettt ettt ettt et et s st esate st esneeaneenaeennesneeneeanees 111
8.1. Local Diagnosis ACQUISITION......c..cecuiruririieriieiieieere sttt ettt ettt et et sene s e saee s st esatenn e esne e e esseeneennees 111
8.1.1. Bound on the duration of an observation Phase............c..cecuieviiiiirienieiiecee e 111
8.1.2. Bound on the duration of Local Diagnosis ACQUISItION.........c.cecuerieriieriieniirirenie et eneen 111
8.2. SyNChIoNIiZation ACQUISITION. c...ceuttrutiettertietieteete ettt ettt ettt sb e bt et e et e eate st e sbeesbe e bt enteebteeueesbeebeenneas
8.2.1. Frame SYNCHIONMIZATION ..cc..eeuviiuiiriiiniiiiieieeteete sttt ettt sttt et eab e et sbte bt e bee bt e bt eatesbeesbeenbeenbeas
8.2.2. Synchronization Capture
8.2.3. Bound on the duration of Synchronization ACQUISTHON.ccc.eeterieriierierrierienie ettt 112
8.3. Bound on the duration of the Clique Detection MOde.............cocuiriiriiniiniinienieniente et 113
9. Clique InitialiZatioNn MIOAEc.eevtiiiiiiiiiiiteiteeete ettt ettt sb e et e bt et s bt sb e e s bt e bt e b e esbeeatesaaesbeenaee 115
9.1. Bound on the relative time skew at the beginning of the Clique Initialization modecccccceeeririennenne. 115
9.2, INItial DIAZNOSISvieuiieiieiieiieieete ettt ettt et e st st a et et e ettt sane s s ae 115
9.2.1. Communication between processes PO and P1..........cc.coooiiiiiiiiiiiii e 115
9.2.2. Bound on the duration of the Initial Diagnosis protocol...........cccccoceriierieniieiiiiinienieeeeee e 117
9.3. Initial SYNCATONIZATION.c...ocuiiiiiiiiieiie ettt et et ettt e eanesenesanesaeeaee 117
9.3.1. Bound on the relative skew at the beginning of the Initial Synchronization protocolc...ccccceceenueenee. 117
9.3.2. Communication between processes PO and Plcocoiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 117
9.3.3. Bound on the duration of the Initial Synchronization protocol...........ccoccevveeriiriiiriinienienieenienee e 118
9.4. Bound on the relative skew during Initial Diagnosis and Initial Synchronization..........c..ccecceeceevervicncnnenne. 118
10. RPP FEQUITEIMENIEScueeuiieiiiriieiiieittenieete ettt ettt ettt eat e st b e s bt et e et eat e s bt e sb e e bt eabeeatesbtesbeenbeenbeenteeaeesbeenbeenbeennens 121
11. RPP deSi@N AESCIIPLION ...cuveiiiiiiiiiieeiteie ettt sttt ettt et s b e b e bt et et sbtesbee s bt e bt enbesateebeenbeenbeenseas 123
11.1. High-level deSIZN COMCEPLSeoruiiiieiieiieieiie ettt et ettt et e eer e s st esaeeae et eaeesae et e neeneeanesanesanenaee 123
11.1.1. FUNCtioNal PATTILIONSeieuiiiiiiieiieieeie ettt ettt e s st ea e e e b et e e eenesanesanennee 123
11.1.2. Distributed pIpeliNINgcccooouiiiiiiiiiiiiiieieet ettt ettt 125

11.2. RPP tOP-18VEL dESIZN.c...eeuiiiniiiiiieiiiiieiieteee ettt ettt st sttt et et eat e s bt e s bt e be e e emaesaeesae 126

T1.2.1. BIOCK QIAZIAIM. c..cetiiiieiiieiiieiteeit ettt sttt ettt et et b et et sat e bt e bt et e bt eat e st s enbtenbe e beesaesaeenae 126

TL. 2.2, IEEITACE ..ttt ettt et e et e st e s ab e s ab e e e ab e e sabeeeabeesabeesabeesabeesabeesabeesareens 128
11.3. MOAE CONTOL UNIL...eiutiiiiieiiieeiteeite ettt ettt e b et e s bt e e bt e sab e e e bt e sabeeeabeesabaeeabeesabeesabeesabeesaneesn 129
11.3.1. BIOCK QIAZIAIMN.....oueiiiiiiieiiieieeieceee ettt ettt et e st st ae et et e e e b e e e e e nesanenae 129

T 1320 INEEITACE ..ttt e st e st e st e sab e e s ab e e e ab e e sabeeeabeesabeeeabeesabeeeabeesabeenateens 130
11.4. SCREAUIE PrOCESSOT ..c.utiiuiieiiiieiieette ettt ettt ettt s bt e e bt e st e e e bt e st e e e bt e sabeesabeesabaesaneens 131
11.4.1. BIOCK QIAGIAIMN.....o.uiiiiiiiiiieiieeieeee ettt ettt ettt e e st st ae et e e e e ae e b e e ne e e enesanenae 131
T1.4. 2, INEETTACE ... sttt s et e a e s b e sae s eae 132
TLLS. TNPUE UTE ettt sttt ettt et e b e s bt e bt e bt e st e s bt e sbte s bt e bt et e eateebtesbee bt ebeenbesmaesaeenae 133
T1.5.1. BIOCK QIAZIAIM.¢..cetiiiiiiiieiiieiteeit ettt sttt ettt b e et et sbte bt e bt et e st eatesb e e bt e b e e beemaesaeenae 133
T1.5. 20 INEETTACE ..ottt bbb e b st eae 134
11.6. INPUL DIAZNOSTICS UL ..c.ueeutieitiriietieiieieete ettt ettt ettt ettt e et e satesbtesbee bt et e eat e ebtesbee bt enbeenbeemaesaeenaee 135
11.6.1. BIOCK QIAZIAIM.¢..cetiiniiiiiieiiieiteeitet ettt ettt ettt et e et shtesbe e bt et eat e eateeb e e bt e bt enbeesaesaeenae 136
TL60.2. IEEITACE ...ttt ettt e s bt esat e s et e sab e s ab e e e at e e sabeeeabeesabeesateesabeesabeesabeesateens 136
11.7. ROULE QNA VOUE UNIE ...eiiiieiiiiiiieiitie ettt ettt ettt et ettt e st e e e bt e st e e eabeesabeesabeesabeesabeesabeesaneens 137
11.7.1. BIOCK QIAGIAIMN.....oueiiiiiiiiiiieieieeee ettt ettt e sae et e e e ae et e e esneeanesanenae 138
TL7. 20 IEEITACE ..ttt et e st e s it e s ab e s ab e s ab e e sat e e s abeeeabeesabeesabeesabeesabeesabeesateens 138
11.8. Node DiagnosticCs UIt.......cc.cocuiriiriiiiiieiieieiee ettt ettt s st sttt e ne e sane e saee 139
11.8.1. BIOCK QIAGIAIM.....cuuiiiiiiiieiiieiieiieeete ettt ettt ettt e ae et e e e s et e e e e e eanesanenaie 139
T1.8.2. INEEITACE ..ottt s bt st et s s ebe e eae 141
11.9. Status MONIEOTING UL .eoueiiiiiiiriieniieieeieete ettt ettt ettt st sb e sbe et e eateebtesbee bt enbeesbesaaesaeenaee 141
11.9.1. BIOCK QIAZIAIM. c..ceutiiniiiiiieiiieiteeit ettt ettt ettt et e e e et shtesbee bt et eateebteeb e e bt e e esaeesaesaeenae 142
T1.9.2 INEEITACE ...ttt b bt sttt sa e b sae b e eae 143

L1 10, OULPUE UL .ttt ettt ettt et et b e bt e bt et eabesbtesbe e s bt e bt eab e ebteebaesbe e bt enbeesbesaaesaeenuee 143
11.10.1. BIOCK QRAZIAIM......ciiiiiiiiiiiiiiiieeeece ettt e st sttt et 144
TLT0.2. TNEETEACE ..ottt ettt ettt e st e s at e e s ab e e s at e e sab e e eateesabeesabeesabeesabeesabeesateens 144
T1.1T. PE INPUE UNIE .ttt sttt ettt st ettt b e sb e e bt et eae et et et e naeebeeaeennenee 145
T1.11.1. BIOCK QRA@IAIM....uiiiiiiiiiiiiiiiciecieceee ettt s sttt et e ettt e eene s s nae 145

) N 1 11 21 O PP ROTUTOPPUUUPTOPPROPPN 146
11,12, PE OULPUL UNIE .cnvintiieiieeieeiietetesteees ettt ettt ettt st sttt be bt e bt et est et et et e saeebeeaeeneenne 146
11,121 BIOCK QRAZIAIMN....eeiuiiiiiiiiiiiiieiteeeteetee ettt ettt sb ettt sbeesb et e e eabeesaesbeenaee 147

T1 12,20 TRERITACE ...ttt s ettt s s ebe e 147
12. BERAVIOTAl PATAIMETIETScouveeuieiiieitieieeieete ettt ettt et sttt e sbe et e eateeat e s bt e sb e e bt enteeatesbtesbeesbeenbeenbeeatesbaenbeenbeenseas 149
12.1. Mode Control Unit (IMCU)uoiiiiiiieeeiiie ettt eette e ettt e et e e e et e e eeaveeeeeataeeeessaeeeasaeeesssseeessseeeennneeas 149
12.1.1. MIN_CMA_DIT ..ottt ettt sttt e s s et 149
12,12, ST_XIA_ DIy ..ottt st ettt 149
12,13, ID DY ettt ettt st sttt s h e b bt e ae ettt ne bbbt et eneeaee 149
T2.14 LT _CD ettt ettt st st b ettt ettt sb e bt s bt e bt et et et e st et e s bt sbe et eneene 150
T2.1.5. LT ST ettt ettt st b e st b ettt et et s bt bt e bt eae e et et et e st et nbeebeeaeeneene 150
T2.1.0. LT _PE ...ttt st st b ettt et b e s bbbt ebt et et et e st et nbesbeeaeeneene 150
T2, 1.7 LT _SP ettt st b e st h ettt et b e s bbbt bt ettt ettt b e e bttt ene 150
12.2. SChedUIE PIrOCESSOTcviiiiiiieiiiieiiect ettt s ettt s s ae et be s e b eseene 151
12.2.1. Max_NUIM_PE_MSEZ ..ottt ettt sttt et sttt sb et es e s sbeenaee 151
12.2.2. DIt _NUM_PE_MISZ ..ottt st et 151
12.3. InPut Unit (TU) .ttt s ettt s st et e ene 151
12.3.1. PD_RAYT_DIY oottt s e s b 151
12.3.2. PD_RAY2 DIy oottt ettt st 151
12.3.3. ID_WNA_DIY ..ottt ettt st ettt et ettt e b e bt ettt et et nbe bt ae s eae 152
12.3.4 ID_WNA_SZ .ottt ettt sttt et s b e bbbt ettt et et beeb e bt e eane 152
12.3.5. IS _WIA_DIY .ttt ettt ettt ettt b e bt bttt e bt et n bbbt eae 152
12.3.6. SP_INIT_Wnd_DIy(NOe_Kind)cccoreruirirerieieieieriinenesieeieeeetentere sttt eae e sae b eae 152
12.3.6.1. RMU .ottt s h ettt et et s bt bbbt et et et nbeshesbeebeeanene 153
12.3.6.2. BIU ettt et h e bbbttt et et b shesbe bt et ene 153
12.3.7. SP_INIT_Wnd_Sz(Node_Kind)cccccceririririiiiiiiiniiienie ettt s 153

X

T2.3.7.1 RMU ettt st s et ettt a e st b e sae et 153

12.3.7.2.BIU oottt ettt ettt e s e et e st e et e et e e bt e et b e e bt e e abe e bt e e aae e tbeeate e tbeenaeeabeaenaeenns 153
12.3.8. SP_ECHO_Wnd_DIy(INOe_Kind)ceeouirierieiieiieieeieetestesie ettt s 154
T2.3.8. 1. RIMU ..ttt ettt ettt e et e e bt e e ab e e tb e e tae e tbe e sae e sseesseesseessaeessbeassseensseensseesseasneanes 154
12.3.8.2. BIU ...ttt ettt ettt ettt e et e et e b e e tb e e tae e tb e e tbe e tbe e abeebbe e taeetbeeabeebbeesaeetrearae et 154
12.3.9. SP_ECHO_Wnd_SZ(NOde_Kind)cccuiiiiriieiiiiiieeiie ittt eiee et e ste e veesveeeveesveeeaseesraesnsessnsaesnsenas 154
12.3.9. 1. RIMU ..ottt ettt ettt ettt et e e bt e et e e tb e e sae e tbeasseessseesseensseassseensseessseensseesaeensseasneanes 154
12.3.9.2. BIU ..ottt ettt ettt ettt e s e e bt e e aa e e tb e e tae e tb e e tbe e tbe e abe e bbeetaeetbeeabeetaeesaeetrearaeanns 155
12.3.10. INIT_PIs_DIy(INOAE_KINd)ceoueeiiiiiiiiiiiiienieeieeieeteetestt ettt ettt e s 155
12.3.10.1. RIMU Lottt ettt et ettt et e et e et e e sbeesbeeasbeessbeensbeesssesasbeenssesnsseenssesssesnsnennes 155
12.3.10.2. BIU .ottt ettt ettt ettt e s e ettt et e et e e st e e bbeesbe e bbeeabeenbbeensaeeatbeeaaeenbbeesaeebreesaeenns 155
12.3.11. INIT_SKW(NOAE_KINA)veiiirieiiieiiieeiie ettt sieesiee st et e st esteesbeesabeesebeessseessseessseesnseessseesnseennsenns 156
T2.3 111 RIMIU Lttt ettt et ettt et e et e et e et e e abeeabbeeabeeasseensaesasseenssesnsseensnesssesnsnennns 156
T2.3.1 1.2, BIU ittt ettt ettt et ettt et e et e e b e e bbe e sbeeabbeenabeenbbeensaeeabbeeaaeenbaeensaeebeeenneenns 156
12.3.12. ECHO_PIs_DIy(NOe_Kind)cccteiieieiiiiiesiieiteie ettt sttt et et e s e e eae e sns 156
123121 RIMU Lottt ettt ettt e et e et e e tb e e tae e bbe e saeessseassseessseessaeensseessseensaeensaeesseaseeanes 156
12.3.12.2. BIU oottt ettt ettt ettt et e et e e aae e tb e e tae e tbe e bae e tbe e abeebb e e baeebbeeaaeebaeesaeetaearaeanns 157
12.3.13. ECHO_SKW(INOAE_KINA)uviiiriiiiieeiieiiieeiie et eeie e st e et e sveesiveesveesaveesvaeesseesssaasssessnseasssessnseesssenns 157
1231301 RIMU ettt ettt et e et e e ab e e te e e tae e bbe e sae e bseassaeessseassaeensseessseentseensaeesseaseeanes 157
12.3.13.2. BIU oottt ettt ettt et e et e e ta e e tb e e ta e e bb e e bae e tb e e bbe e bbeaaaeebbeeaaeebaeesaeebaearaeanns 157
12.3. 14, CD_WNAL DYttt ettt ettt ettt a et et sat e sb e b e eesaeesaesbeenae 157
12.3.15. CD_WINA2_DIY ..ttt ettt ettt st st sbt e bt et et eatesb e e bt e e et esaesbeenaee 158
12.3.16. SU_P1_Wnd1_DIy(NOde_Kind)ccccerueriiriiniiiieiieitesiteieeieeeste sttt et ettt 158
12.3.16.1. RIMU ..ottt ettt ettt et e e et e et eesbeeabbeessbesasseesstesasbeesssesnsaeensnesnseesnsnennns 158
12.3.16.2. BIU ..ottt ettt ettt et ettt ettt et e et e e sa e e tbeessbeeabbeessbeeabbeessaeeabbeeaaeenbaeesaeebeeeseeenns 158
12.3.17. SU_P2_Wnd1_DIy(Node_Kind)cceeceriiriereieiteieeie ettt sttt ettt et eeeene e e 158
123,171 RIMU ettt ettt ettt et e et e et e e tb e e tae e baeebaeestbeessseessssansaeensseessaeensseensaeesseanseeanes 159
12.3.17.2. BIU oottt ettt ettt ettt et e et e e ab e eba e e sae e bae e baeeabaeesaeebbeentaeebbeebeeebaeesaeetaearaeants 159
12.3.18. SU_WNAZ_DIY ..ottt sttt ettt et s e st e b e et e e msesneesaeesseenseeneeenseeseaseenseensesnsesneennes 159
12.3.19. SU_DII ...ttt ettt ettt e st e e et e e s abeestbeesabaessbeessbaeasseesssaaassaesssaaassaesssaassseesssaassseesssaenssenns 159
12.3.20. SU_MAX_BUTT CNluriiiiiiiiiiiiieciicceeee ettt e st e e vt e st eestbeesbeesabeesabeessbeesabaassseesaseasssesssseesssenss 160
12.3.21. PE_Wnd1_DIy(NOde_Kind).......ccooerriiriiriiiiiniiiieiieeteteteteee sttt ettt 160
T2.3. 211 RIMIU Lottt ettt ettt ettt et e et e st e et eessbesatbeessbesabaeessaesnsaeessaesnsaesnseesnseesnseennns 160
T2.3.21.2. BIU .ottt ettt ettt ettt ettt et e et e et e e bb e e sbaeeabb e e st e eaba e e bae e baeeateeabaeesaeebeeeneeents 161
12.3.22. PE_WNA2_DIY .ottt ettt ettt sttt et et et eatesb e bt e e e e e saesbeenae 161
12.3.23. PE_DIL.....oiiiieiieeeiteeteeee ettt ettt e s bt et e sabe e st e e sebeessbeesabaessseessseeassaesnsaeassaesnsaennsaesnseensseesnsaennseens 161
12.3.24. PE_MaX_BUTT _CNE .eiiiiiiiiiiiiieiieecieeeie ettt sttt ettt e st esite e st e e sateessbeessaeessbaessseesnseenssessnsaennseens 161
12.3.25. SYNCNS_WIA_SZ .ttt ettt ettt e st e e at e e st e e sabeesabeesabeesabeesabeesabeesateens 162
12.3.26. Frm_Sync_Gap(NOAe_Kind)cooueiriiiiiiiiiiieeieeeeteeee ettt sttt ettt 162
12.3.26.1. RIMU ...ttt ettt ettt et et e et e e at e e be e e taeeabaeessaeestaeassseenbeeansaeensseessaeenbaeansaeensseanseeanns 162
12.3.26.2. BIU ..ottt ettt ettt et e et e e vt e ebb e e ta e e bae e baeeabbeebaeebaeebaeetaeebaeebaeeraeebaearaeants 163
12.4. Input Diagnostics Unit (IDU)ccoooiieiiiiiiiiiiiieieit ettt 163
12.4.1. PD_ECHO_CNEL_LO tiiitteeiiieiiieiiteeieeeie sttt e st e siteesteeseteesebeesaseesssaessseessseessseesssesnsseesnsessssessssesnssenns 163
12.4.2. PD_ECHO_CNEL_Hiuttiiotiiiiiiiiieiieecieeeie ettt st e st e st esiteesiveessteesaseessseessseessseesssesnssessssesssseesssesnsseens 163
12.4.3. PD_ECHO_CN2_LL0 .eeutteiiieiiieiiieeteeete et esteesteesiteesibeesibeessseessseessseessseesssesssseesssessssesssessssessssesnssenns 163
12.4.4. PD_ECHO_CN2_Hiuuioioiieiiiiiiieiieeeieeeie ettt e st e seteesteesiteeseteessseessseessseesssaessseesssessssesssessssessnsesnsseens 164
12.5. Route-and-Vote Unit (RVU)oooiiiiiiiiiiiciee ettt ettt et e et e e e e etb e e eaaae e e eatreeeeatseeeeanaeas 164
12.5.1. INTT_SKW(NOE_KINA) ..eevviiirieiiiiiiiieiiieiieeeieesieeste e st e steesiteeseteesabeesaseessbeessseessseensseessseenssessssesnssenns 164
T2.5. 1.1 RIMU Lottt ettt et e et e e e e e te e e baeeabaeesbaeentaeassaeaasseansaeeasseessaeenrasansaeanseeanseaanns 164
T2.5.1.2.BIU .ottt ettt e et e et e e ta e e be e e ta e e ba e e bae e bbe e baeabbe e baeebaeebaeenbaeenbaeetaeareeants 164
12.5.2. ECHO_SKW(NOAE_KINA)eciviiiiiiiiiiieeiiiicie et steeet e sve e st siveesiteesbeesaaeeseveeesseessveassseessseessseessseasssenns 164
T2.5.2. 1. RIMU Lottt ettt ettt et e et e e aa e ebe e e ta e e beeasbaeentaeansaeeasseessaeessaeessaeenseeenseesseaanseeanns 165
12.5.2.2.BIU ..ottt ettt ettt et e bt et e e bt e e ta e e be e e ta e e bae e bae e bae e bbeebeeebeeeabaeeaaeenbaeebaeebeearaeanns 165
12.5.3. SCIS_Sync_Rst_DIy(INOAe_Kind)c.ceoueriiiieiieiieiieieeeeee ettt ettt ae e s enas 165
12531 RIMU .ottt ettt ettt ettt ettt e et e st e et eeataeasbteeabeeasseesabeeessaeeaseeesseeensaesnseesnseeanseennns 165
12.5.3. 2. BIU ..ottt ettt ettt ettt ettt ettt e et e et e et e e be e e bt e e bt e e bt e eabeeenbaeenbeeeaaeenbeeebeeebeeebeennte 165

12.5.4. SP_Sync_Rst_DIY(NOde_Kind)cooceeriiiiiiiniiiiiieeteetesteteeteete sttt ettt e 166

T2.5.4. 1. RMU ..ottt e et e e e e e e et e e e eeesaataa e e e e e eeeseataareeeeeesenaaareeeeeseenannees 166
12.5.4.2. BIU ettt ettt e e ettt e e s e ettt e e e e e e —tteee e e e e ——tteeeeesaaatteeeeesannanaes 166
12.6. Status Monitoring Unit (SMU)cocuuiiiiiiiiiieete ettt ettt sttt sttt e st e sabeesabeesanee s 166
12,6, 1. SA_TIMEOUL....cciiiiiiieeiiieiee ettt e e e e ettt e e e e e e e ettt eeessessaateeeeessessanaaeaeeesssssnssssseessesssnranseeeens 166
12.6.2. IS _THIMEOUL ...veeeiiiieeeeieeee ettt ettt e e e e e et e e e e e s e e et e eeeesesssaaaeeeeeesesansasaeeessessnssssseessessnranseeeens 167
12.6.3. SP_TIIMEOUL ...eoeiiiiiieeiieiiee ettt ettt e e e e e et e e e e e s e et e e eeeesesaaateeeeessasansaeseeessesssnssssseessesssnranseeeens 167
12.7. OULPUL UNIE (OU) ..ttt sttt et ettt e este st e et e e st enseenseeneesseesseanseenseensaeseenseeseenseensesneesnes 167
1271 ID_SIA_DILY ettt ettt et st bt bttt et et b e b et e e et saeenae 167
12.7.2. IS_INIT_Snd_DIy(NOde_Kind)cc.cevirriiriiiieniiiiiieeteeteiteteee ettt 167
T2 7. 2.0 RMU ettt ettt e e e e ettt e e e e e e aaaa e e e e e eeeaeataaeeeeeeesenaaareeeeeeeenaarees 168
12.7.2.2.BIU ettt et et e e e e e e e e e e e — e e e e e e aa———taeeeetaa——raaeeeesenaaaes 168
12.7.3. SP_INIT_Snd_DIy(INOde_Kind).......ccoceeriiriiriiniiiiiieeteetesiteieee ettt ettt 168
T2.7.3. 1. RMU ettt e et ettt e e e e e ettt e e e eees b e e e e e e e eeearataareaeeeseenaaaaeeeeeesenaaaees 168
12.7.3.2. BIU ettt e ettt e e e e e ettt e e e s e e ——a et ee s e e e ——tteeeeese i a—tteeeeesananaes 168
12.7.4. ECHO_Snd_DIy(INOAE_KIN)veeitieiieieeieeiesiieit ettt ettt st sttt et et eneeeneesseeseenseennesneesns 169
L2741 RIMU ottt e e e ettt e e e s e ettt e e e e sessaaaaeeeeesessasaaaeeeesssssnsasaeeeeessannnnees 169
T2.7.4.2. BIU ettt ettt e e e ettt e e e s e ettt e e e s e e —— et e ee s e e e ——tteeeeeseaaatteeeeesannanaes 169
) T O B T ' T B) 2SR 169
L T O B I 1T 2/ B) 2SS 170
12.7.7. SU_P1_Snd1_DIy(INOde_Kind).....c..cooerriiriiniiniiiiieieeiesteieecee ettt ettt s 170
T2.7. 7.1 RMU et ettt e et e e e e e ettt e e e eeeraatae e e e e e eeenataareeeeeesessaaareeeeessenanrees 170
T2.7.7.2.BIU et e e ettt e e e e e e e e et e e e e e e e ———aaeeeeeaaa—raeeeeeeenaaaes 170
12.7.8. SU_P2_Snd1_DIy(INOde_Kind)........cooeriiriiriiniiiieieeieetesitetcee ettt ettt s 170
T2.7.8. 1. RIMU ...t ettt e e e ettt e e e e e et e e e e e eeeaataaeeeeeseenataareeeeessensaaareeeeessenaanees 171
L2.7.8.2. BIU ettt ettt e e e ettt e e e s e ettt e e e s e et — et eeeseeaa——atteeeeese i a—tteeeeesannanaes 171
12.7.9. SU_DIL ...ttt e e et e e e e e s e b et e eeeeses et teeesesesasaaeeeeessessnsassseessessnsaneeeeeas 171
12.7.10. PE_Snd1_DIy(INOAEe_KIN)ccuieiiieiieieiieeiiesiteit ettt ettt sttt et et es et e e e enaesneesns 171
L2710 1. RIMU oottt ettt e e e e et e e e e e s ettt et e e e sesaaaaaeeesesessnsaaeeeesesssnnsasseeeesssannnnees 172
L2.7.10.2. BIU ettt ettt e e ettt e e e s ettt et e e e s e e aa et e ee e e e e ———teeeeeese bt teeeeesanaanaes 172

) B2 R 5 S B) | (TR RRRRRTT 172
13, SHUCTUIAL PATAMELETS ..c.uveeuteeuteiiieitierteete ettt ettt et et et et s bt e sbe et e eateeutesbtesb e e bt enbeeabesbtesbeesbeebeenteeaeesbaenbeebeenseas 173
13.1. Interface-level Structural PAramMELEIS.coouertiiierieriieiiete ettt ettt sttt et ettt st et e b et saaesaeenaee 173
)T 0 R [OOSR 173
1302 Ve ettt et e e et e e e ea————a e e e e e aa—————teeeeaa i ————tteeeeeaa i ———tteeeeeaataaraaeans 173
13,130 NUM_LNK_SYN 0ttt ettt ettt a ettt satesb e e bt e e e ssaesbeenaee 173
13.1.4. Payload_WIALH ...o.eoiiiiiiiiiiee ettt ettt sa ettt et b e bbb et 173
1315 MAX_PaYLOAA ...ttt ettt ettt e sttt e st et s bt e ate e sabeesaree s 174
13.2. Mode Control Unit (IMCU)iiiiiiiieeeiiieeeeiiee et teeetee e esteeeestteeeessseeessseaeesssseeeasssaeesssssaesssssesssnssseesnssees 174
13.2.1. MAX_DIAZ CYC nitiiiiiiiiteie ettt ettt et e st e bt e s ab e e s bt e e sab e e s ateesa bt e sabeesabeesabeesabeeeateens 174
13.2.2. MAX_IMCU _LT ..ttt ettt e e e e ettt e e e e s s ettt e e e e e sesaaaaeeeeeessssansaeeeeeesessnsaaseeeens 174
13.2.3. MAX_ IMICU _TIIIE .ttt ettt e e e e ettt e e e e s s eamsaa et eeeessessaaaaeeeeessessnnsaseseessessnssseeeeens 174
13,3, SCNEAUIE PrOCESSOT .. uvvvviiiiiieieeiiieeee ettt eee et eeee e et e e e e e e e eeataaeeeeeeeeesstaaseeeeessestareeeseeesensaareseseeseannes 175
13.3.1. MAX_PE_MSZ_CNI c.ueeiiiiiiiiitiiteteeeeee ettt ettt ettt sbe et et st sbe e bt e bt e e esbessaesbeenaee 175
13.3.2. SChed_FIFO_DEPth ...c.eiiiiiiiiiiiiieieeeeteet ettt sttt et sttt et et s 175
13.4. INPUE UL (TU) ettt ettt et e e et s bbbt e s bt et et eat e ebte bt e bt et eeabesaaesbeenaee 175
13.4.1. Input_FIFO_DEPth c...couiiiiiiiiiiieeeeeet ettt sttt et et sttt 175
13.4.2. Max_Frm_SYNC_TIMI.....cocuiiiiiiiiiiiiiieeee ettt ettt ettt st st sb et e e esaesbaesbeenaee 175
13.4.3. MaxX_SYNC_DIY_TIE ...etiiiiiiiiiiiie ettt ettt et ettt e st e st e e sabeesate e sabeesabeesabeesateens 175
RSN\, P L OO0 15'q g o 1 176
IR\ F: 5 LG O 15'q | G O L 176
13.5. Input Diagnostics Unit (IDU)cc.cooiiiiiiiiiiiiiiiieieit ettt e e 177
ISR LY £ 5 ST (oL (o) s N 115 177
13.5.2. MaX_SEQ_IMON_CILT cnitiiiiiiiieeiie ettt ettt ettt e bt e et e e s at e e ateesabeesabeesabeesabeesabeesaseens 177
13.6. Route-and-Vote Unit (RVU)ooooiiiiiiiiii et ettt ettt e e e e tr e e eaaa e e e sateeeeeaareeeeereeas 177

Xi

13.6.1. Max_RV U _ACPE_TINI ..ccuiiiiiiiiiiiiieiieneeeceee sttt s 177

JC I . S VA S I G5 115l I 1 1) T 177
13.7. Status Monitoring Unit (SMU)cocueeiiiiiiiiiie ettt sttt sttt et e bt e s e e sabeesabeesanee s 178
DN Y B3 Gl 1070 178
13.7.2. Sent_FIFO_DEPth....cc.iiuiriiiiiriiiieteentese ettt ettt sttt et sa et be et en e 178
13.8. OULPUL UNIE (OU).cuiiiiiiieeiietetee sttt ettt sttt ettt ettt b e s bt e bt et e st et e st e besae e bt et ennenee 178
13.8.1. Output_FIFO_DEPth...c..couiiiiiiiiiiiiiiniieiceeeteteetee sttt sttt ettt st 178
ISR £ O 1 O 5515 ol 11 178
JICRTCILY £ 0] 6 I 5115 i o O3 11 G 179
14. Specifying a partiCular SOTULIONc..coouieriiriiriiriteitet ettt sttt ettt st st e et ettt eatesbaesbeenbeas 181
14.1. Platform SPECITICALIONScc.viiutiriiirtieieeieete ettt ettt ettt et st st sttt et e st ebte s bt e bt e beenbeeanesaeenae 181
14.2. Environmental SPECIFICATIONSeoutiriieriiriiiieitiericeie ettt ettt st sttt et sbte st e st e b et eaaesaeesaee 181
14.3. Operational-Delay CONSIIAINLS.c..ccoterteriirieriereenteete ettt et et st st e bt este et eateebtesbeesbeenbeesbesssesaeenae 181
14.4. Preservation Mode SPeCIfiCAtIONS.c..eevueruiriirieriienitete ettt ettt sttt ettt eate st e bt enbe e saaesaeenae 185
14.5. Failure-Recovery SPeCIfiCAtiONSc..cocuiiiiiiiiiiiiiieiieii ettt et s 186
14.6. Clique Detection SPECIfICALIONS........cc.eeiuiiiiiiiiiieieii ettt sttt et e sene e 186
14.7. Miscellaneous SPECIFICATIONS........cc.ueruieriiriiiiiiiieriieit ettt sttt et e e enesane e saie 186
14.8. AddItioNAl CONSITAINESveeutriiiieritieette ettt ettt ettt e et e e bt e et esbteesbeesabeeeabeesabeeeabeesabeeesbeesabeesabeesabeesaseens 186
15. ConClUdING TEMATKSc..eeiiiiiiiiiietct ettt ettt et ettt et enesane s aee s et e st esseenneeanesanenneennees 189
Appendix A. Detailed specification for the RPP Input Unit............cccooiiiiiiiiiiniiiicceeeee e 191
A.1. ROBUS tasks allocated to the INPut Utcocueiiiniiiiiiiiiiinieieeeeee ettt 191
A2, BaSiC TU fUNCHIONSoviiiiiiiiiiieiiiiniieieet ettt ettt s s ettt eae 191
A.2.1. SYNCRIONOUS TECEPLIOMcouviiniiiuiieiiieiieeiteettet ettt ettt sttt et ettt e at e s bt e bt e bt e bt esbesabesbeesbeenbeenaeenseeneenas 195
A.2.2. FiX@d-delay TECEPLION.eorueiiiiiieiiieiteeiteettet ettt ettt sttt ettt et e at e s bt b e bt et e e sabesbtesbeesbeenaeenteeaeeeae 197
A.2.3. Asynchronous-moONitOring FECEPTION.evutertteriiiierieriteriterieerie ettt et stt et e bt et ebesatesbeesbeesaeeneeenteeaeeeae 198
A.2.4. Frame SYNCHIOMIZATIONc..cccuieiuiiiieiiiieiiettete ettt ettt ettt e e e anesane s e e saeesaeenaeenneennens 198
A.2.5. SChedUle PIOCESSINZ.....c.ueiriiiiiiiieiieieeieeeete ettt et ettt ettt et e sane s e e saee st esaeenneeaneeas 199
A.2.6. PIPEIINE CONIOL ..ottt ettt et et ettt et et sane s e e saeesne e et enneenneas 200
A.2.7. Error-syndrome GENETATIONcc.eeuiruiiriieniieiieieetestesiee st et et eeneeaee s e et e e b e esseenesanesaeesaeesaeenneenneennens 200
ALBUTIEETTACE .ttt ettt b et e bt e bt bt et e bt e e bt e e bt e e bt e e e hbeeebt e e nabeenes 200
A4 MESSAZE TECEPLION.eeniiiniieiiieiiieiieieeie et et et sttt ettt e e st et e b e e e s e e saeesae e st esaeeanesanesseenbeenseeanesanesanenaee 209
A4 1. SYNCRIONOUS TECEPLIOMceutiiuiieuiieiiieitieiieettet ettt ettt et et et e at e e bt s bt e bt e bt eab e e atesabesbeesbeenbeenbeensesneeeae 209
A.4.2. Asynchronous-mMONItOriNgG TECEPTION.eerutetiiierieriterite ettt ettt ette st et eb et etesatesbtesbeenbeeneeensesaeeeae 211
A.4.3. FiXed-delay FECEPLION.corueiiiiiieiieiteeitettet ettt sttt ettt et at e s bt e bt e bt et eatesatesbeesbee bt enaeensesaeeane 212
A.5. Error-syndrome ZENETALIONco.terutirtieiterteriteittenttente et eatestteste et et e esteebtesbtesbee bt eateeatesbaesbeenbeenbeenbessaesbeenaee 214
A5 1 TU_UNEXPECLEA_MESSAZE ...cnvenviniiniteniieiietieieeite st sitesttesteeste e bt eatesbtesbee bt enbeeabeeatesatesbeesbeenbeeneeensesneeane 214
A5 2 TU_EMPLY_BUTTET ..ottt ettt st st be e et saee e 214
ALS. 3. TU_INPUL_OVEITUI .netiiiiieiieeiitteeitee sttt ettt et et e st e ettt e sabeesateesubeesuteesabeesabeesabeesabeesabeesaseesabeenaseens 216
A.5.4. TU_Link_Error and IU_Imm_LInK_EITOTcoooiiiiiiiiiiiiieee e 217
A.5.5. IU_Buffer_Overload and IU_Imm_Buffer_Overloadccoooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 219
A.S5.6. TU_Frame_SYNC_EITOT.....cooiuiiiiiiiiiiitet ettt sttt et e st e sab e st e st e sateesabeesaneens 220
A.6. Response t0 MCU COMMANGS........co.eeiiiiiriiiieiieniteie ettt ettt e s e s et e eenesane e naee 221
YN B Ao 6 (S 21 S 221
YN LY 111 o B\ (o Te (oIl o =] 222
A.6.3. Minor_Mode = Collective_DIagnosiS........ccceeruerierierierienieeniteie ettt ettt sttt e eseeeare e e 222
A.6.4. Minor_Mode = Schedule_UPdate..........ccoeeriiriiriiriiiieiieneecee ettt sttt 223
A.6.5. MInor_Mode = PE_COMIMUIICAIONcoeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e seseeesssesssssssssssesesssssssssssens 225
A.6.6. Minor_Mode = SYNC_PIreServationc..ccoeerierierierienienieeieete ettt ettt st sttt e e e eaeesaee e 227
YN 111 T B\ (o Te (N 1 U i] 227
A.6.8. Minor_Mode = PD_SYNC_CAPLUILEcoccuiiiiiiriiiiiiieiieerieeete ettt ettt ettt e sate e sibeesaee e 227
A.6.9. Minor_Mode = ID_INItIAl_SYNC c...ceiriiiiiiiiiiiiterieeteete ettt ettt et ettt e sate e sibeesaae e 228
AT REQUITEA PATAIMNGLETSeeuvieuriieiiieiietiete et et st et eaeee e et e ste et e et e e te e s e saeesaeesaee st eaneeanesaeeseenseeanesanesanesaeennee 229
AT 1. STrUCtUIal PATAIMETETSeoviiniieiiieiiieieiiete ettt ettt et et e e s et et et eanesanesanesmeesaeeneenneennesanenne 229

xii

ALT.2. BEhavIOral PATAMELETSc.eetierteiieiieiitenttenttete ettt et ett ettt et e et st s bt e bt e bt et e et e eatesbeesbeenbeebeenbesneesaeenae 229

AL8. AddItioNal TEMATKSeoueiiiiiiiiiiiiiiiici et s et 231
A.8.1. Required re@iStered OULPULScc.ievuiriirieriieiieie ettt ettt ettt sttt et e e e eanesnesaeesmeesaeenneenneas 231
A.8.2. Relevant parameter TEIALIONS.ccuieuiriirieiieieete ettt ettt ettt sttt eneenesaeesaeesaeesaeenneenneeas 232

REFEIEICES ..ottt ettt bt e b e e bt e bt s bt e e bt e s b e e e bt e sabeeeabtesabeeeabeesabeeeabeesabeesaneens 233

Xiii

Notation

The following table lists the symbols used in this document. Many of the symbols have generic
descriptions and are reused where applicable. Subscripts are used to distinguish different quantities
labelled with the same main symbol.

Symbol Description
N e Total number of BIUs in the system
® Range: Positive Integers; Unit: None
M e Total number of RMUs in the system
® Range: Positive Integesr; Unit: None
n e Total number of BIUs trusted by a node
e Range: Naturals; Unit: None
m e Total number of RMUs trusted by a node
e Range: Naturals; Unit: None
Q e Total number of nodes of the opposite kind
e Range: Positive Integers; Unit: None
0 e Total number of nodes of the same kind
e Range: Positive Integers; Unit: None
0 e Total number of nodes of the opposite kind trusted by a node
e Range: Naturals; Unit: None
) e Total number of nodes of the same kind trusted by a node

e Range: Naturals; Unit: None

IMP(x,, x;) e IMP = Integer Mid-Point function (= Rounded Average)
e Integer closest to the mid-point between x; and x,
e Algorithm:
Step 1: x = (X1 + x)/2
Step 2: IMP = round(x), with round(x) = Ix] ifx < 15, or [x]if x = V2

e Range: Integers; Unit: Same as x1 and x2
Lis e Link syndrome width; number of syndrome bits for each receiver
e Range: Naturals; Unit: None
Lpr e Payload field width for ROBUS messages
® Range: Positive Integers; Unit: None
f ¢ Clock frequency
e Range: Reals; Unit: Hertz (Hz = Cycles per second)
T e Granularity of a clock (i.e., duration of a clock tick)
e Range: Positive Reals; Unit: Second
t e Real time
e Range: Reals; Unit: Nominal Tick
T ® Clock time
e Range: Integers; Unit: Local Tick
p ¢ Bound on the drift rate a clock signal generated by a physical oscilaltor
e Range: Reals; Unit: None
k * Frequency division factor (= Frequency step-down factor from physical-oscillator frequency
to local-clock frequency)
® Range: Positive Integers; Unit: None or Tick/Tick
cx(T) e Earliest real time at which clock x reaches value T
® Range: Reals; Unit: Nominal Tick
T ® Bound on the relative time skew of particular events among specified nodes
[

Range: Non-negetive Reals; Unit: Tick

XV

Symbol

Description

I1 ® Bound on the observed relative time skew of particular events
e Range: Positive Integers; Unit: Local Tick
) e General real-time delay
e Range: Reals; Unit: Nominal Tick
A ® General clock-time delay
e Range: Integers; Unit: Local Tick
d e Message delivery delay
e Range: Non-negative Reals; Unit: Nominal Tick
v e Uncertainty in message delivery delay
e Range: Non-negative Reals; Unit: Nominal Tick
r e Message reception delay
e Range: Non-negative Reals; Unit: Nominal Tick
e ¢ Uncertainty in message reception delay (= Network imprecision)
® Range: Non-negative Reals; Unit: Nominal Tick
R e Expected reception delay
e Range: Naturals; Unit: Local Tick
u ¢ Bound on error of expected reception delay
® Range: Reals; Unit: Nominal Tick
W e Window size
e Range: Naturals; Unit: Local Tick
C e Computation Process delay with respect to the end of the deskew window for time-driven
protocols
e Range: Naturals; Unit: Local Tick
S e Send Process delay with respect to a reference time for time-driven protocols
e Range: Naturals; Unit: Local Tick
A e Accept function delay with respect to the time of reception of the selected event for
synchronization protocols
e Range: Naturals; Unit: Local Tick
B e Send Process delay with respect to a reference event for synchronization protocols
e Range: Naturals; Unit: Local Tick
H e Reset delay with respect to a reference event
e Range: Naturals; Unit: Local Tick
A e Data Introduction Interval
® Range: Reals; Unit: Nominal Tick
A e Data Introduction Interval
e Range: Positive Integers; Unit: Local Tick
K e Number of messages in a stream
® Range: Positive Integers; Unit: None
P (uppercase) | ® Nominal resynchronization period
[]

Range: Positive Integers; Unit: Local Tick

p (lowercase)

Nominal resynchronization period
Range: Positive Reals; Unit: Nominal Tick

xvi

1. Introduction

The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor-
Independent Design for Enhanced Reliability (SPIDER), a general-purpose fault-tolerant integrated
modular architecture (IMA) currently under development at NASA Langley Research Center. The
purpose of this effort is to produce a flexible architecture that can be configured to satisfy a wide range of
performance and reliability requirements, while preserving a consistent interface to application programs.
The architecture is expected to support functions of various criticality levels, including ultra-reliable and
safety-critical aircraft functions with hard real-time deadlines.

ROBUS is a time-division multiple access (TDMA) broadcast communication system with medium
access control by means of a time-indexed communication schedule. ROBUS-2, a developmental version
of ROBUS, provides the following guaranteed fault-tolerant services to the attached processing elements
(PEs): message broadcast (Byzantine Agreement), dynamic communication schedule update, time
reference (clock synchronization), and distributed diagnosis (group membership). The bus is tolerant to
internal as well as PE faults, and incorporates a dynamic self-reconfiguration capability driven by the
internal diagnostic system. ROBUS-2 also features fault-tolerant startup and restart capabilities.

ROBUS-2 is intended for laboratory experimentation and demonstration of the capability to
reintegrate repaired nodes, dynamically update the communication schedule, and tolerate and recover
from correlated transient faults. ROBUS-2 is also intended to demonstrate that the bus is an efficient
communication system that can achieve a PE-message throughput that approaches the available
bandwidth at the physical communication layer, while preserving the fault-tolerance guarantees. A
thorough description of the high-level ROBUS-2 design can be found in [Torres 05].

ROBUS is a distributed system consisting of a set of dedicated ROBUS Protocol Processors (RPP)
communicating over a lower-level physical communication network. For ROBUS-2, the RPPs are
custom hardware-based components that implement the ROBUS functionality. The RPPs have simple
strobe-in/strobe-out synchronous interfaces to the PEs and to the lower-level communication network,
and they are capable of processing messages at a rate of one message per clock tick. The RPPs have a
large array of error detectors for self-checks, checks of remotes nodes, and checks for the integrity of the
bus. The RPPs can also read and diagnose error syndromes generated by the lower-level network.

The RPPs are described in the VHDL (Very High Speed Integrated Circuit Hardware Description
Language) language and are implemented on Field-Programmable Gate Arrays (FPGA). The VHDL
code is highly parameterized in the behavioral (e.g., time to wait before asserting a signal) and structural
(e.g., size of a buffer) domains in order to enable customization of the bus with respect to the targeted
application. Most of the parameters must be specified before VHDL synthesis. Parameters that uniquely
identify a particular RPP within the system (e.g., the assigned unique identification number) can be
specified pre-synthesis or given post-synthesis as an input to the RPP.

This document is organized as follows. First, an overview of the ROBUS-2 conceptual design is
presented. Then, the abstract timing models used in the timing analyses are introduced. The timing
analyses appear after that. Next, the RPP design requirements are enumerated. This is followed by a
description of the RPP. The formulas for the behavioral and structural parameters are given after that,
followed by a list of the variables that must be specified for a particular implementation. The appendix
has the detailed specification for one of the components of the RPP.

2. Overview of the ROBUS-2 communication system

This section presents a brief description of ROBUS-2, including the structure and operation of the
system. ROBUS-2 is intended for implementations with a relatively small number of PEs, say, no more
than seven. A more detailed description can be found in [Torres 05].

2.1.1. System structure

Figure 2.1 shows the ROBUS topology. The bus has an active-star architecture with the Bus
Interface Units (BIUs) serving as the bus access ports and the Redundancy Management Units
(RMUs) providing connectivity as network hubs. The network between BIUs and RMUs forms a
complete bipartite graph in which each node is directly connected to every node of the opposite kind.
Only the links shown are available for communication. All the communication links are bidirectional.

RMUs

Figure 2.1: ROBUS topology

Figure 2.2 depicts the basic structural components of a ROBUS node. This decomposition applies to
BIUs and RMUs. The Communication Module handles all the point-to-point communication. The links
between BIUs and RMUs can be either one-to-one or one-to-many links, as long as broadcast
communication is supported. The nature of the links between BIUs and PEs depends on how they are
physically related. If each BIU and its corresponding PE are in physically separate fault-containment
regions (FCRs) (see the Redundancy management section), then they are interconnected by a one-to-
one data communication link. If each PE-BIU pair share an FCR, then some other means of local data
exchange can be used.

The Computation Module, also known as the ROBUS Protocol Processor (RPP), handles all the
ROBUS-specific functions including mode transition logic, low-level protocols, error detection,
diagnosis, reconfiguration, and distributed coordination. The main difference between BIUs and RMUSs is
the functionality of their RPPs.

Computation Module (RPP)

Received — Output
Messages |---- Messages

Communication Module

Receivers Transmitters

Figure 2.2: Generic node structure for BIUs and RMUs

2.1.2. Distributed coordination

Each ROBUS node is driven by an independent, free-running physical oscillator. These oscillators
are characterized by a known bound on their drift rates with respect to real time. Each node also has a
logical-time clock, referred to as the local-time clock, which keeps track of the passage of time as
indicated by the physical oscillator. Given an initial precision of synchronization for the local times at
any two nodes, the precision can worsen over time at a rate determined by the drift rates of the physical
oscillators.

There are two main categories of ROBUS protocols: synchronization and synchronous. The
synchronization protocols use event-triggered communication and event-processing operations to
generate high-precision distributed events that are used to synchronize the local-time clocks. The
synchronous protocols process information using time-triggered communication and operations. To
achieve proper coordinated action in the execution of the synchronous protocols, the local-time clocks of
the participating nodes must be synchronized within some known bounded precision.

The ROBUS has two synchronization states: synchronized and unsynchronized. In the synchronized
state, the precision of synchronization is determined by an internal distributed reference event generated
by a clock synchronization protocol. The precision of this event allows the nodes to achieve very tight
local-time synchronization. The bus is in the unsynchronized state when it transitions to the startup and
restart processes. The precision of synchronization in this state is mainly determined by events not
directly controlled by the bus. It is assumed that the synchronization precision in this mode has a known
bound that can be large relative to the precision in the synchronized state. The bus transitions from the
unsynchronized state to the synchronized state after the execution of a synchronization protocol. Because
the local times can drift apart, a synchronization protocol must be re-executed at regular intervals to
ensure that the local times are kept synchronized. The rate of re-synchronization is constrained by
physical parameters of the design (e.g., oscillator drift rates) as well as precision and accuracy goals. The
fault-tolerance attribute of the synchronization protocols enables the bus to achieve and maintain
synchronization even in the presence of failed nodes.

The execution of synchronous protocols is driven by the local time and a time-indexed operation
schedule. The low-level distributed protocols specify the node activities by defining the operations, the
operation sequencing, the message flow patterns, and the executing nodes for each operation. The timing
of the operations is determined using a model of distributed synchronous composition. This execution
scheme and the high synchronization precision in the synchronized state make the steady-state behavior
of the ROBUS highly deterministic as it precisely specifies the timing of all the internal communication
between BIUs and RMUs, as well as the communication with the PEs.

4

2.1.3. Redundancy management

The purpose of redundancy management is to increase the probability of continued service delivery
through effective utilization of available resources. The ROBUS is designed to manage its redundant BIU
and RMU components independently from the PEs.

Fault containment refers to the isolation of physical faults to prevent their propagation throughout the
system. This is achieved by establishing fault containment regions (FCR) that ensure a sufficiently high
degree of independence with respect to physical faults. Ideally, the FCRs have separate power supplies
and are physically and electrically isolated from each other. Communication between FCRs is through
carefully specified interfaces that ensure a sufficiently high degree of fault containment. In the ROBUS,
each RMU node is contained in its own FCR, and each BIU can be located by itself in a separate FCR, or
it can share an FCR with its corresponding PE.

Each BIU and RMU node is an observer of every node on the bus. An observed node is referred to as
a defendant. The diagnostic system of the ROBUS is a distributed system divided into two layers. In the
local layer, the nodes monitor the communication and independently diagnose each individual node and
the bus as a whole. In the collective layer, the nodes exchange local diagnostic information to augment
their local assessments. Every ROBUS node performs the diagnostic functions of error detection, node
assessment, and bus assessment.

Error detection is the foundation of the diagnostic system. The communication checks monitor the
communication links between the nodes. The in-line checks are applied to the received messages and are
based on expected timing and content characteristics. The cross-lane checks also detect errors in
received messages by comparing them against the result of dynamic voting. The protocol checks inspect
received messages and voting results with respect to expected properties for intermediate and final
protocol results. The self-checks are performed by a node to monitor its own operation. PE-error
checks inspect the messages received by the BIUs from their attached PEs. These error checks generate
the syndromes from which diagnostic decisions are made.

The diagnostic system assesses each node to determine its suitability to participate in the delivery of
services to the PEs. A trustworthy node can be relied upon to deliver the expected services.
Untrustworthy nodes do not behave as expected. A defendant is locally accused by an observer when
the observer determines that the defendant is untrustworthy, but it is uncertain whether other observers
have reached the same conclusion. A defendant is collectively convicted when the observers agree that a
sufficient number of them consider the defendant untrustworthy. An observer forms a full diagnostic
assessment of a defendant based on the local and collective diagnoses.

In the context of the ROBUS, a clique is a group of BIUs and RMUs working together in a
coordinated way to deliver services to the PEs. A clique is considered trustworthy if its services are in
accordance with the specification. The diagnosis of the bus consists of determining if a trustworthy
clique is in operation.

The BIU and RMU nodes use the diagnostic assessments to determine the clique membership. A
clique is reconfigured by adding or removing nodes from its membership. The purpose of
reconfiguration is to enhance the ability of a clique to establish and preserve proper service delivery in
the presence of untrustworthy nodes. A clique member is allowed to participate in the delivery of
services to the PEs and is referred to as a trusted node. A node searching for or trying to become part of
a clique is called a recovering node.

The FCRs ensure that the only error propagation path between nodes is through their interfaces.
Error containment for the interfaces between BIUs and RMUs is realized by placing barriers at both
ends of each interface. The BIUs and RMUs disable their outputs upon detection of a local failure or a
bus failure (i.e., fail stop). At the receiving end of the interfaces, the nodes use input-error detection in
the form of communication and in-line checks, and dynamic voting to mask undetected errors from
trusted sources. The sources whose inputs are considered in a vote are called the eligible voters.

2.1.4. Operational modes

Figure 2.3 shows the major mode transitions for BIU and RMU nodes. After a power-on enable, a
node goes to the Self-Test major mode to perform a local initialization and test its circuitry. The node
will remain in this mode indefinitely unless it successfully passes the test. A recovering node enters the
Clique Detection mode to determine whether there is a clique operating in the Clique Preservation mode.
If a clique is found, the recovering node transitions to the Clique Join mode, where it demonstrates to the
clique members that it is suitable for admission. If a clique is not found, the recovering node transitions
to the Clique Initialization mode to form a new clique. In the Clique Preservation mode, a clique
delivers services to the PEs according to the service schedule. At any time, if a node detects a local
failure or a bus failure, it transitions back to the Self-Test mode to reinitialize its operation and find other
nodes suitable for providing communication services to the PEs.

Disabled
Power-on enable Deactivated
Local failure or Bus failure
Enabled v Vv
Self-Test
¢ Ready
Clique
Detection
No clique found / \ Clique found
Clique Clique
Initialization Join
Clique formed / Clique joined
Clique
Preservation

Figure 2.3: Major operational mode transitions for ROBUS nodes

2.1.4.1. Clique Preservation

Figure 2.4 illustrates the minor mode transitions for the Clique Preservation major mode. In the
Schedule Update mode, a schedule-download protocol is executed to allow the PEs to reprogram the bus

6

according to their communication needs. During PE Communication, first the PE messages are
broadcast according to the communication schedule, and then the BIUs and RMUs exchange accumulated
accusations against nodes of the opposite kind, which serves to enhance the diagnosis and reconfiguration
capabilities of the bus. This is followed by a re-synchronization of the local time in the Synchronization
Preservation mode and then a reassessment of the clique membership in the Collective Diagnosis mode.

Schedule PE Synchronization Collective
Update > Communication Preservation Diagnosis

?

Figure 2.4: Minor mode transitions for Clique Preservation mode

2.1.4.2. Self-Test

Upon entering the Self-Test mode, a node disables its output and performs a reset of its circuitry. This
mode serves as a checkpoint in which the nodes are required to exercise and assess the status of their
circuitry before attempting to join other nodes on the bus. This mode also provides a safe state to which
the ROBUS nodes can go after detecting a failure and before attempting to re-engage.

2.1.4.3. Clique Detection

Figure 2.5 shows the minor mode transitions in the Clique Detection major mode. In Local Diagnosis
Acquisition, a node uses asynchronous local observations to make a first assessment of the likely
members of a clique. In Synchronization Acquisition, the node attempts to synchronize to the clique.
In Collective Diagnosis Acquisition, the node captures the health assessment for each node as
determined by the clique during the execution of the distributed diagnosis protocol. If at any time during
the Clique Detection mode the node determines that a valid clique is not present, it will exit this mode and
attempt to form a new clique. Otherwise, it will assume that a clique exists and will try to join it.

From Self-Test
|
v
Local Synchronization Collective
Diagnosis P> Acquisition P Diagnosis > To)
Acquisition Acquisition Clique Join

i No valid clique

To Clique Initialization

Figure 2.5: Minor modes transitions for Clique Detection mode

2.1.4.4. Clique Join

When a node enters the Clique Join mode, its state is in agreement with the state of the clique. In this
mode, the node runs for two diagnostic cycles, essentially trying to demonstrate that it can be trusted.

The existing members of the clique will integrate the node as soon as they confirm that the admission
rules have been satisfied.

2.1.4.5. Clique Initialization

Figure 2.6 shows the minor mode transitions for the Clique Initialization major mode. A node
transitions to the Clique Initialization major mode to form a new clique. The first minor mode is Initial
Diagnosis, in which a node identifies other nodes that are also attempting to form a new clique. This is
followed by the Inmitial Synchronization and Collective Diagnosis minor modes, where the nodes are
synchronized and a consistent clique membership is established.

From
Clique Detection

v

Initial Initial Collective To
Diagnosis P Synchronization P Diagnosis —» Clique
Preservation

Figure 2.6: Minor modes transitions for Clique Initialization mode

2.1.5. ROBUS Messages

The BIUs, RMUs, and PEs communicate using ROBUS Messages (RM). Figure 2.7 illustrates the
message format, which consists of a Tag field followed by a Payload field. The Tag field has one of two
values: SPECIAL or DATA. The format and content of the Payload field depends on the value of the Tag
field and the context in which the message is used.

1 bit fixed number of bits
<+“—r | <4 >
Tag Field Payload Field

Figure 2.7: ROBUS Message format

A SPECIAL message carries a bit pattern corresponding to one of several labels, including the INIT
and ECHO labels used by the synchronization protocols.

DATA messages carry data with a context-specific format. For Collective Diagnosis, the Payload
field of each message carries diagnostic information in the form of a Boolean vector. For Schedule
Update, the messages carry the number of messages scheduled for a particular PE. For the PE Broadcast
protocol in the PE Communication mode, the messages carry information from the PEs with an
application-dependent format. The exchange of accusations after the completion of the scheduled PE
broadcasts uses the payload format for diagnostic messages.

2.1.6. Point-to-point communication

Figure 2.8 illustrates the composition of the one-way communication path between a BIU and an
RMU. The link transmitter and receiver are part of the Communication Module at the source and receiver
nodes, respectively. The received messages are stored by the Computation Module at the receiver node
until the proper time for processing. This arrangement supports all the modes of point-to-point
communication between BIUs and RMUs: synchronous, fixed-delay, and asynchronous-monitoring.

Send Transmission Reception To processing
Link Link Input
> Transmitter | > Receiver > Buffer >

Figure 2.8: Generic point-to-point communication path

Synchronous communication is used with the synchronous protocols. This is a time-triggered
communication scheme. Synchronous communication requires that the local-time clocks of the source
and receiver nodes be synchronized within some known bounded precision. Figure 2.9 illustrates the
main variables. A time Tgrgr 1S chosen as a reference to coordinate the send and receive actions. A
message sent at time Tsyp with a nominal reception delay Rpp is expected to be received at local time
Treve. Taking into consideration the local-time skew between the source and the receiver, and the
uncertainty in the reception delay, a message from a trustworthy source should be received within an
expected-reception interval of duration Wgey centered at Treyr. A message that arrives outside this
interval is considered invalid. A valid received message is buffered until the scheduled time for
processing Tproc. This buffering corresponds to a deskewing function in which the received message is
synchronized to the local time at the receiving node.

I I >
I I -

T T Local Time
REF SND at sending node
| RPP |
1 |
. Wrev
| |
| S A A
Local Ti
e Treve Toroc ocal Time

at receiving node

Figure 2.9: Timing for synchronous communication

Fixed-delay communication is used with the synchronization protocols. For this communication
mode the information of interest is in the timing of the messages. A transmission is triggered by events at
the source. At the receiving end, the message is buffered for a predetermined time duration before
processing it. This communication mode is used only with the INIT and ECHO messages of the
synchronization protocols. For the Synchronization Preservation protocol executed in the Clique
Preservation and Clique Join modes, it is possible to use local events at the nodes to determine a nominal
expected time of reception and an expected-reception interval for the synchronization messages.

Asynchronous-monitoring communication is used by a recovering node to observe the activity on
the bus before its local time is synchronized. This communication mode does not require coordination

9

between a source node (which could be a synchronized clique member) and the receiving recovering
node. Asynchronous monitoring is made possible by the fact that the BIUs and RMUs broadcast their
transmissions to all the nodes of the opposite kind and the point-to-point communication path allows the
recovering node to receive messages regardless of its state. The recovering node uses the buffer as a
fixed-delay queue, and the messages are processed in the order in which they are received. The delay is
not necessarily the same as for the fixed-delay communication mode used with the synchronization
protocols.

The PE Interface at the BIUs is designed using a first-in first-out (FIFO) buffer abstraction for input
and output. For input, it is assumed that each PE message is available when expected or there is a
corresponding error indication. For output, it is always assumed that the message can be output at its
scheduled time without having to confirm that the PE is ready to receive it.

2.1.7. Communication patterns
This section presents the patterns of communication for the ROBUS-2 protocols. The description is
limited to the sequences of computation processes and message transmissions. The actual computation

operations performed by the nodes are not described here. [Torres 05] has a complete description of the
protocols.

2.1.7.1. Collective Diagnosis

Figure 2.10 shows the communication pattern for the Collective Diagnosis protocol. The circles
represent the processing done by the nodes. Each arrow represents a single-message broadcast
transmission from the sources to the receivers. BIUs and RMUs use synchronous communication. The

results of the protocol are the convictions against BIUs and RMUs, which are stored locally by BIUs and
RMUs, and forwarded to the PEs.

PEs

BIUs

RMUs

Figure 2.10: Message flow graph for the Collective Diagnosis protocol

2.1.7.2. Schedule Update

Let N denote the number of BIUs, which is assumed to equal the number of PEs connected to the bus.
The PEs are identified according to the statically assigned identification numbers which uniquely identify
each ROBUS port. The desired schedule is delivered by each PE to its BIU in the form of N consecutive
messages with the positions in the sequence corresponding to the identification numbers of the PEs and
the payload fields of the messages indicating the desired number of messages to be broadcast. The

10

interval between the send time of one message and the send time of the next (known as the data
introduction interval or DII) [De Micheli 94] is constant. The submitted schedule messages are
processed using an agreement protocol, called the Schedule Update protocol, to ensure that all the BIU
and RMU clique members and the PEs agree on the result for each PE. Figure 2.11 shows the message
flow graph for the Schedule Update protocol. BIUs and RMUs use synchronous communication. The
protocol is applied independently N times, with each iteration processing the messages delivered by the
PEs that indicate the number of messages to be broadcast by a particular PE. The result of each protocol
iteration is sent back to the PEs in process P2. After all the messages have been processed, the ROBUS
nodes individually assess the resulting schedule. If the new schedule is valid, it is accepted. Otherwise, a
default schedule known to all the PE, BIU, and RMU nodes is used.

@

o @, B, B
o @ B

Figure 2.11: Message flow graph for the Schedule Update protocol

2.1.7.3. PE Broadcast

In PE Communication mode, the ROBUS grants bus access to individual PEs according to the
communication schedule. An interactive consistency protocol, called the PE Broadcast protocol, is used
for each scheduled message to ensure that the PEs receive consistent messages. The bus access pattern is
a time-indexed, as-soon-as-possible (ASAP) round-robin sequence. Figure 2.12 provides an example of
the access pattern. The PEs access the bus in ascending order according to the port identification
numbers. The first scheduled message is sent at some predetermined time. The DII for PE messages is
constant. After all the scheduled messages for one PE have been sent, the messages for the next PE are
broadcast maintaining the proper DII between messages. If a PE is not scheduled to send messages, then
the messages for the next scheduled PE are sent. This continues until all the scheduled messages have
been sent.

PE 1 PE 2 PE 4 PE 6 PE7

>

Time
Figure 2.12: Example of an access pattern during the PE Broadcast service

Figure 2.13 shows the message flow pattern for the PE Broadcast protocol. This protocol is used to
process each scheduled PE message. Only the scheduled PE and its corresponding BIU are required to
send messages. The protocol uses synchronous communication. The result of the protocol is relayed to
the PEs.

11

Source

PEs PE only

Source
BIUs BIU only
RMUs

Figure 2.13: Message flow graph for the PE Broadcast protocol

2.1.7.4. Accusation Exchange
The broadcast of PE messages in the PE Communication mode is followed by an exchange of

accumulated accusations against nodes of the opposite kind using the Accusation Exchange protocol.
Figure 2.14 shows the message flow pattern. This protocol uses synchronous communication.

we @ 4B
RMUs @

Figure 2.14: Message flow graph for the Accusation Exchange protocol

2.1.7.5. Synchronization Preservation

Figure 2.15 shows the communication pattern for the Synchronization Preservation protocol. The
message to be sent by each process is indicated in the figure. Fixed-delay communication is used for all
the messages. For this protocol, it is possible to use the time of transmission of a message in one process
to determine an expected time of reception in another process. For example, the RMUs can estimate the
expected time of reception for process P3 based on the time of transmission in process P1. [Torres 05]
describes in detail how to do this.

PEs

BIUs

RMUs

Figure 2.15: Message flow graph for the Synchronization Preservation protocol

12

2.1.7.6. Local Diagnosis Acquisition

In Local Diagnosis Acquisition, a recovering node monitors the activity on the bus to determine a
trusted set of opposite-kind nodes operating in the Clique Preservation mode. The recovering node uses
the asynchronous-monitoring communication mode to make its observations. A node in this mode does
not transmit messages. Figure 2.16 illustrates the nominal message flow for a recovering RMU in a 3x3
system (i.e., 3 BIUs and 3 RMUs). The PEs and their links are not shown. The solid arrows represent the
message flow from the BIUs to the recovering node. The dashed lines represent the bidirectional
communication between the BIUs and the other RMUs. The message flow is similar for a recovering
BIU.

Recovering

Figure 2.16: Message flow in a 3x3 system with a recovering RMU executing Local Diagnosis Acquisition

2.1.7.7. Synchronization Acquisition

The Synchronization Acquisition mode has two protocols: Frame Synchronization and
Synchronization Capture. The Frame Synchronization protocol monitors the activity on the bus
essentially to find the gap between consecutive executions of the Synchronization Preservation protocol.
Figure 2.16 also applies to this protocol. The recovering node can use fixed-delay or asynchronous-
monitoring communication.

The Synchronization Capture protocol is activated by the completion of Frame Synchronization
protocol. A recovering node executing Synchronization Capture receives messages only from the
opposite kind nodes and does not generate any messages. In that sense, Figure 2.16 also applies to this
protocol. Synchronization Capture uses fixed-delay communication applied to ECHO messages from the
Synchronization Preservation protocol. Figure 2.17 shows the message flow graph for the
Synchronization Preservation protocol expanded to include the Synchronization Capture processes. As
shown, a recovering RMU or BIU processes the ECHO messages broadcast between processes P2 and P3,
or between P3 and P4, respectively. In addition, a recovering BIU executing process P4C also sends an
ECHO message to its attached BIU.

13

PEs

BIUs

RMUs

Figure 2.17: Message flow graph for Synchronization Preservation with the Synchronization Capture processes

2.1.7.8. Collective Diagnosis Acquisition

A recovering node executing the Collective Diagnosis Acquisition protocol is assumed to be
synchronized to a clique. The processing in this protocol is essentially the same as for the Collective
Diagnosis protocol and is executed by a recovering node in parallel with the execution of the Collective
Diagnosis protocol by the clique members. Figure 2.10 shows the message flow pattern for the Collective
Diagnosis protocol. A recovering node receives messages using the synchronous communication model.
In terms of the communication pattern, the main difference between Collective Diagnosis Acquisition and
Collective Diagnosis is that a recovering node does not broadcast messages during the Collective
Diagnosis Acquisition protocol. In that sense Figure 2.16 also applies to this protocol.

2.1.7.9. Initial Diagnosis
In the Initial Diagnosis minor mode, the nodes execute a synchronous protocol to determine an initial
trusted set taking advantage of the known bound on the synchronization precision when operating in the

unsynchronized state. Figure 2.18 illustrates the message flow pattern. This protocol uses synchronous
communication.

Y
RMUs @ @

Figure 2.18: Message flow graph for the Initial Diagnosis protocol

2.1.7.10. Initial Synchronization

The Initial Synchronization protocol is similar to the Synchronization Preservation protocol. The
differences in processing are the result of the possibly large bound on the relative local-time skew at the
beginning of the protocol execution. Figure 2.19 shows the message flow pattern. For this protocol, the
BIUs send an ECHO message to the PEs from process P4, instead of an INIT message from process P2.
This protocol uses fixed-delay communication.

14

PEs

BIUs

RMUs

Figure 2.19: Message flow graph for the Initial Synchronization protocol

15

3. Timing models

This section presents the abstract models used in the genreric timing analysis of ROBUS. RPP design
constraints and application-specific timing specifications must be applied to the models in order to
determine the behavior for a particular ROBUS implementation. The results of the analysis can then be
used to compute the corresponding values for the structural and behavioral parameters of the RPP.

The following terms are used throughout. A process is a set of interrelated activities or operations
performed to produce a prescribed output or product. An action is something that is done to produce a
result or effect. An operation is an action. An operation is composed of one or more operations, also
called sub-operations. A primitive operation is the simplest type of operation for which further
decomposition is not of interest. An event is a change in condition or state. An event takes place at an
instant of time and does not have duration. Time is a nonspatial continuum that is measured in terms of
events that succeed one another from past through present to future. A clock is a device for measuring
time, and it contains a physical oscillation mechanism that periodically generates an event called a tick.
The duration between two consecutive ticks is called the granularity of the clock. A trigger is an event
that causes the activation of some action. An operation driver is an entity that causes an operation to
advance by triggering the lower level actions. An event-triggered operation is an operation triggered by
an event. A time-triggered operation is an operation triggered by a time event. An event-driven
operation is an operation in which the sub-operations are triggered by events. A time-driven operation
is an operation in which the sub-operations are triggered by time events.

The timing models are expressed in terms of parameterized behavior of individual nodes. The
behavior of groups of nodes can be expressed in terms of bounds on the values of these behavioral
parameters, as well as bounds on the relative local-time skew.

3.1. Physical oscillators and local-time clocks

Each ROBUS node is driven by an independent, free-running physical oscillator (i.e., the phase is not
controlled in any way by ROBUS) and a logical-time clock (i.e., a counter) that keeps track of the passage
of time as indicated by the oscillator. An oscillator tick, also called a clock tick or a system tick, is the
basic unit of time on the bus. In what follows, the term oscillator clock denotes the signal generated by
the physical oscillator, the local-time clock refers to the logical-time clock, and the local time refers to
the state of the logical-time clock. The process of synchronizing a signal or a message to the transitions
of the oscillator clock is referred to as signal synchronization. The process of synchronizing a message
to the local time is referred to as deskewing.

Let f, denote the nominal frequency of an oscillator measured in ticks per second or Hertz (Hz). The
duration of a tick for an ideal oscillator is exactly 1/fy seconds. An ideal oscillator is said to have zero
drift rate with respect to real-time since the oscillator perfectly marks the passage of time with a tick
duration of exactly 1/f, seconds. Real oscillators are characterized by non-zero drift rates with respect to
real-time. It is assumed that the drift rate of the physical oscillators is bounded by a small constant py,
which is positive, real valued, and unitless. The bound on the drift of the physical oscillators is
interpreted as follows. Let c«(T) denote the earliest real time at which local-time clock x reaches value T.
¢«(T) has units of nominal ticks (1 nominal tick = 1/f; seconds). T; and T, denote arbitrary values of the
local-time clock with the constraint T, > T;. Then:

17

(T2 - T)/(1 + po) < cx(T2) - c(T1) < (1 + po)(T2 - T1) (3.1

Let Ty denote the nominal tick duration measured in seconds (i.e., 1 nominal tick = Ty seconds = 1/f;
seconds). T, denotes the actual tick duration of local-time clock x. The bound on the drift rate of clock x
can be expressed as follows:

To/(1 + Po) < T < (1 + Po)To (3.2)

In other words, the fastest clock has a tick duration of at least 1/(1 + po) nominal ticks, and the slowest
clock has a tick duration of at most (1 + pp) nominal ticks. This model accounts for the drift with respect
to real time of the physical oscillators and the local-time clocks. The point-to-point communication
model accounts for jitter on the output signal of the physical oscillators.

3.2. Drift rate of a clock signal generated by a frequency divider

We want to determine the drift rate for clock signal y generated by a factor-of-k frequency divider
driven by clock signal x. k is a positive-integer constant. f; denotes the actual frequency of clock signal
X, Ty denotes the actual tick duration of clock signal X, .o denotes the nominal tick duration of clock
signal x, p;_denotes the actual signed drift rate for clock signal x, and p, denotes the absolute value of the
actual drift rate (i.e., py = Ip,). Here, p, > 0 corresponds to a slow clock, and p, < 0 corresponds to a
fast clock.

The relation between the actual drift rate and the actual tick duration of x is as follows:

If p, >0, then T, = Too(1 + Py). (3.3)

If pi <0, then T, = T o/(1 + Py). (3.4)

Let T, denote the actual tick duration and absolute value of the drift rate for clock signal y, and let p,
denote the actual absolute value of the drift rate for clock signal y. The actual frequency of the derived
clock signal y is f, = f,/k and the tick duration is T, = kt,. The nominal tick duration of y is T, = kT,.
Using (3.3) and (3.4), we show that a frequency divider preserves the drift rate of the driving clock signal
as follows:

If px* 20, then T, = T/k = T, o(1 + py). Thus: Ty = kT, o(1 + py) = Ty 0(1 + py). 3.5

If px* <0, then T, = T/k = T, o/(1 + py). Thus: Ty = kT, o/(1 + px) = Ty o/ (1 + py) (3.6)

Thus, clock signal y has the same drift rate as clock signal x (i.e., py = py). In addition, the bound on
the drift rate for clock x applies to the derived clock y.

From this point on, we use py as the bound on the drift rate for all clock signals.

3.3. Paths to Self-Test mode

A ROBUS node enters the Self-Test mode either for startup or for restart. The transition to this mode
is triggered by events. For startup, the triggering event is the power-on enable. For restart, the triggering

18

event is the detection of a failure.

3.3.1. Startup

For startup, all the nodes that will form a clique are enabled within a time interval of known bounded
duration. This results in a corresponding bounded relative skew of the local time at power-on enable. It
is assumed that the nodes begin the Self-Test mode as soon as they are enabled.

dpor denotes the actual duration of the time interval within which the nodes are enabled, and Opogmax
denotes the upper bound on dpog. Opor is measured in seconds. Tpog denotes the upper bound on the
relative time skew at power-on enable. Tpog is measured in nominal clock ticks. Spoglmax and Tpog are
related as follows:

TpoE = OpoElmax / To 3.7

3.3.2. Restart

A node returns to the Self-Test mode to attempt a restart after a failure condition is detected. This
condition can be caused by random hardware failures or by environmental conditions. Random hardware
failures generally affect only one node at a time, while environmental conditions have the potential to
directly affect all the system nodes simultaneously. After detecting a failure, a node is assumed to go
through a process of local recovery to regain control of its local operation, probably involving a local
reset, before entering the Self-Test mode. Figure 3.1 shows the sequence of events in the timing model.
Srcp denotes the actual duration of a fault-causing phenomenon measured in nominal clock ticks. Spcphnax
denotes the maximum value of Orcp. App denotes the actual duration of the failure-detection delay
measured in local clock ticks. Opp denotes the actual duration of the failure-detection delay measured in
nominal clock ticks. Opplna denotes the maximum value of Orp. Arr denotes the duration of the local
recovery process measured in units of local clock ticks.

Beginning of fault-causing o
phenomenon Beginning of local recovery

Failure detection delay Transition to Self-Test mode

\

AFD ALR

8FCP

time

Figure 3.1: Path to Self-Test for a restart

3.4. Self-Test mode

Once in Self-Test mode, the execution can be driven by time or by local events associated with this
mode. In general, the duration of the Self-Test mode must satisfy the timing requirements for the
transient-fault scenarios expected to be handled successfully by the implementation.

19

Agstv denotes the duration of the Self-Test mode for a ROBUS node measured in units of local clock
ticks.

Transition to Self- Transition to Clique
Test Mode Self-Test Mode Detection Mode

d

: >

time

< Agtm —

|
|
|
|

Figure 3.2: Self-Test mode

3.5. Clique Detection mode

The transition to Clique Detection mode is triggered by the end of the Self-Test mode. The Clique
Detection mode is composed of three minor modes: Local Diagnosis Acquisition (a.k.a., Preliminary
Diagnosis), Synchronization Acquisition, and Collective Diagnosis Acquisition. Local Diagnosis
Acquisition is composed of two consecutive observation intervals, each of duration at least as large as a
re-synchronization interval. Synchronization Acquisition is composed of the Frame Synchronization
protocol and the Synchronization Capture protocol. Collective Diagnosis Acquisition has the same
timing characteristics as the Collective Diagnosis protocol in Preservation mode. Figure 3.3 illustrates
the elements of the model for this mode.

Beginning of

Schedule
Update;
S Reset Transition to
End of .Local . yhe Rese CgllectiYe Clique Join
Self-Test Diagnosis Synchronization Diagnosis mode
mode Acquisition Acquisition Acquisition
APD ,begin APD ,OW APD ,OW AFS ,begin ACD ,begin ACD ASU Jbegin

R S SV GV G 2 el o

1 1 R

time

Figure 3.3: Clique Detection mode
App pegin denotes the delay from the time a node exits the Self-Test mode until the beginning of the first
observation interval during Local Diagnosis Acquisition, measured in local-clock ticks. Appow denotes

the duration of the observation intervals (or “windows”), measured in local-clock ticks.

We assume that the Synchronization Capture protocol begins immediately after the Frame
Synchronization protocol is complete. Ags peoin denotes the delay from the end of the second observation

20

window during Local Diagnosis Acquisition to the beginning of the Frame Synchronization protocol
during Synchronization Acquisition, measured in local clock ticks. Ags denotes the actual duration of the
execution of the Frame Synchronization protocol measured in local clock ticks. Ogs denotes the actual
duration of the execution of the Frame Synchronization protocol measured in nominal clock ticks. Agc
denotes the actual duration of the execution of the Synchronization Capture protocols measured in local
clock ticks. &sc denotes the actual duration of the execution of the Synchronization Capture protocols
measured in nominal clock ticks.

Synchronization Acquisition ends with a synchronization reset and the setting of the local clock to 0.
From this point on, the local time is synchronized to the clique in Preservation mode. The time delay to
begin the Collective Diagnosis Acquisition protocol in Clique Detection mode is the same as the time
delay to begin the Collective Diagnosis protocol in Preservation mode. Acp pegin denotes the time from the
synchronization reset to the beginning of the Collective Diagnosis protocol, measured in local clock ticks.
Acp denotes the time to complete the execution of the Collective Diagnosis protocol in local clock ticks.

The transition to the Clique Join mode occurs at the beginning of the execution of the Schedule
Update protocol. Before that point, a detected failure attributable to the absence of a clique results in a
transition to the Initialization mode. Agypegin denotes the time from the end of the Collective Diagnosis
protocol to the beginning of the Schedule Update protocol, measured in local clock ticks. Acpy denotes
the actual duration of the Clique Detection mode for a ROBUS node, measured in units of local clock
ticks. dcpm denotes the actual duration of the Clique Detection mode for a ROBUS node, measured in
units of nominal clock ticks

It is assumed that a ROBUS node can detect the absence of a valid clique at any time after entering the
Local Diagnosis Acquisition windows. After detecting this condition, a node clears its state and
transitions to the Clique Initialization mode. Acpm.cv denotes the delay to transition to the Initialization
mode after detecting the absence of a valid clique, measured in units of local clock ticks.

3.6. Initialization mode

The Initialization mode is composed of the Initial Diagnosis, Initial Synchronization, and Collective
Diagnosis protocols. Figure 3.4 illustrates the model for this mode.

Beginning of
Schedule
Update;
Transition to
Clique

195 Preservation
Synchronization Acquisition mode

mode \l/ \J/ \l/
\ AlD,begin AID AIS,begin AIS ACD,begin ACD ASU.,begin
h
| | | | | | | |
— — —

time

Sync Reset
Beginning of Initial Collective
Clique nitia " Diagnosis
Initcilalization Diagnosis mitial ;

Figure 3.4: Clique Initialization mode

21

Ap pegin denotes the delay from the time a node enters the Clique Initialization mode until the time it
begins execution of Initial Diagnosis, measured in units of local clock ticks. Ajp denotes the actual
duration of the Initial Diagnosis protocol, measured in units of local clock ticks. &, denotes the actual
duration of the Initial Diagnosis protocol, measured in units of nominal clock ticks. A pegin denotes the
delay from the time a node completes the Initial Diagnosis protocol until the time it begins execution of
Initial Synchronization; measured in units of local clock ticks. Ajs denotes the actual duration of the
Initial Synchronization protocol, measured in units of local clock ticks. &5 denotes the actual duration of
the Initial Synchronization protocol, measured in units of nominal clock ticks.

Initial Synchronization ends with a synchronization reset and the setting of the local clock to 0. From
this point on the local time is synchronized to the newly formed clique. The time to begin the Collective
Diagnosis protocol in the Clique Initialization mode is the same as the time to begin the Collective
Diagnosis protocol in the Preservation mode. The parameters for this execution are presented above in
the section covering the Clique Detection mode.

The transition to the Clique Preservation mode occurs at the beginning of execution of the Schedule
Update protocol.

3.7. Synchronized time-triggered operation

Once a node has synchronized to a clique, and for as long as it remains synchronized, the execution of
protocols is triggered exclusively by the local time. The Synchronization Preservation protocol is driven
by events generated during its execution. The other protocols, known as the synchronous protocols, are
driven by time. The synchronous protocols are executed in the Collective Diagnosis, Schedule Update,
and PE Communication minor modes. Figure 3.5 shows the relevant variables.

Collective Schedule PE Sync
Diagnosis Update Communication Preservation
Sync Reset \L \L \L \L Sync Reset
ACD,begin ACD ASU,begin ASU APE,begin Al"E ASl",begin ASP

S A R A S

time

Figure 3.5: Synchronous Operation

Agy denotes the actual duration of the Schedule Update protocol measured in local clock ticks. Apg pegin
denotes the actual time delay from the end of the Schedule Update protocol to the beginning of PE
Communication protocol, measured in local clock ticks. Apg denotes the actual duration of the PE
Communication mode, measured in local clock ticks. Agppegin denotes the actual time delay from the end
of the PE Communication protocol to the beginning of the Synchronization Preservation protocol,
measured in local clock ticks. Agp denotes the actual duration of the Synchronization Preservation
protocol, measured in local clock ticks.

22

3.8. Communication Module

The Communication Module of each ROBUS node is composed of send and receive sub-modules.
The send sub-module consists of one or more separate transmitters and supports broadcast transmissions.
The receive sub-module consists of a separate receiver for each node of the opposite kind.

For ROBUS-2, communication, processing, and diagnosis are based on single-message transactions.
The size of a Communication Module transaction is a ROBUS message. The communication of each
ROBUS message can be decomposed into multiple physical transmissions. However, the
Communication Module should not combine multiple ROBUS messages into a single communication
unless the timing of such transaction preserves the current assumptions and specified behavior of the
Computation Module.

The transmitters and receivers are expected to be generic components supporting event-triggered
communication. For the transmitters, this means that the reading of a new message and the beginning of
its transmission process is triggered by a send signal at the transmitter’s input interface. Similarly, the
receivers should be able to receive new messages whenever they arrive. During normal operation, the
only expected communication timing constraint at the input interface of the transmitter is the data
introduction interval. Startup and restart timing constraints for the transmitters and receivers should be
taken into consideration in the design of the startup and restart behavior for the ROBUS nodes.

The message delivery delay is the time elapsed from the instant a transmitter receives a send request
to the instant the message is presented at the receiver’s output interface in the communication model. It is
assumed that the output of the receiver is not edge synchronous with respect to the clock signal at the
receiving node (see Section 4).

The message reception delay is equal to the message delivery delay plus the additional time delay to
synchronize the received message to the local clock signal at the receiving node.

Symbol dpp; denotes the minimum point-to-point message delivery delay, measured in nominal clock
ticks. dppj, denotes the maximum point-to-point message delivery delay, measured in nominal clock ticks.
vpp denotes the delivery precision (i.e., uncertainty in the point-to-point delivery delay), measured in
nominal clock ticks. rpp; denotes the minimum point-to-point message reception delay, measured in
nominal clock ticks. r1pp;, denotes the maximum point-to-point message reception delay, measured in
nominal clock ticks. epp denotes the reception precision (i.e., uncertainty in the point-to-point reception
delay), measured in nominal clock ticks. Acomm denotes the minimum data introduction interval for a
send port of the Communication Module, measured in local clock ticks.

3.9. Computation Module

The Computation Module is modeled in terms of two components: the Computation Process and the
Send Process. The Computation Process handles the processing of received messages according to the
requirements of the protocol being executed. The Send Process handles the timing and formatting
requirements for the output messages.

23

3.9.1. Computation Process

The Computation Process has two stages. The Reception Stage provides timing adjustment and inline
error detection for the received messages. The Computation Stage performs the reduction of the set of
received messages into a single result value, and it also handles the cross-lane error detection.

3.9.1.1. Reception Stage

Depending on the protocol being executed, the Reception Stage provides either fixed or variable
delays for the input messages. For the synchronization protocols, the Reception Stage has a fixed input-
output delay for each input path. This behavior preserves the relative positions of the received
synchronization messages, which allows the Accept function in the Computation Stage to properly read
the relative skews of the timing events. In this mode, the delay of the Reception Stage depends mainly on
the uncertainty in the time of reception and on the time required to process the messages for error
detection and diagnosis. For the synchronous protocols, the Reception Stage performs a deskewing
function in order to synchronize the received messages to the local time. The deskewing is applied
independently to each input path, and the received messages are forwarded to the Computation Stage at a
predetermined time. The Reception Stage also inspects the messages for error detection.

For Local Diagnosis Acquisition and Frame Synchronization, the Reception Stage has a fixed input-
output delay for each input path.

3.9.1.2. Computation Stage

The timing of the Computation Stage depends on the protocol being executed. For the
synchronization protocols, the Accept function produces the output event with a predetermined delay with
respect to the time it receives the input event to be selected. For the events not selected, the Accept
function appears to have a variable input-output delay. For the synchronous protocols, the Reception
Stage forwards all the messages at the same time and the Computation Stage produces its output a fixed
delay later. In this case, the input-output delay of the Computation Stage is the same for all the inputs.

The Computation Stage has a fixed input-output delay for Local Diagnosis Acquisition. A worst-case
delay is used for Frame Synchronization.
3.9.1.3. Timing model for synchronization protocols

For the synchronization protocols, the Computation Process has a fixed delay from the time when the
event to be selected is received to the time when the Accept output is asserted. We combine the
Reception Stage and Computation Stage delays into a single parameter. Symbol A denotes the
Computation Process delay for synchronization protocols, measured in local clock ticks.
3.9.1.4. Timing model for the synchronous protocols

For the synchronous protocols, the Reception Stage and Computation Stage operations are time

triggered. The Reception Stage is allocated a time interval to receive, deskew, and diagnose the input
messages. There is a predetermined time, referred to as the expected time of reception, that is defined as

24

the nominal time at which a message should arrive at the Receive Stage. The messages from good
sources should arrive at the Reception Stage within a predetermined time interval (or window) centered at
the expected time of reception. This interval is called the deskewing window. For expected messages
arriving during the deskewing window, the deskewing function forwards the received messages at a
predetermined time after the end of the window. The timing of the Computation Process for synchronous
protocols is modeled by two delays: the time from the expected time of reception to the closing of the
deskewing window, and the time from the closing of the deskewing window to the output of the
Computation Stage.

Wheskew denotes the size of the deskewing window measured in local clock ticks. Wpegew pre denotes
the pre-expectation window (i.e., the size of the deskewing window before the expected time of reception
measured in local clock ticks). Wpegewpost denotes the post-expectation window (i.e., the size of the
deskewing window after the expected time of reception, measured in local clock ticks. C denotes the
processing delay from the closing of the deskewing window to the output of the Computation Stage,
measured in local clock ticks.

3.9.2. Send Process

The Send Process handles the transmission of messages. Once the process has been triggered either
by an event or by time, the internal operation of the process is driven by the time since the trigger.

3.9.2.1. Timing model for the synchronization protocols

For the synchronization protocols, the operation of the Send Process for the first protocol transmission
(i.e., the INIT from the BIUs) is triggered by the local time, while the remaining transmissions are
triggered by the Accept output events. Symbol B denotes the send delay with respect to the reference
event for synchronization protocols; measured in local clock ticks

3.9.2.2. Timing model for the synchronous protocols

For the synchronous protocols, the operation of the Send Process is triggered exclusively by time.
Symbol S denotes the send delay with respect to a reference time, measured in local clock ticks
3.9.3. Constraint on the data introduction interval for the Computation Module

The throughput potential of the Computation Module is characterized by its minimum data
introduction interval. This parameter characterizes the input rate constraints of the Computation Process
and the Send Process. If the individual processes have different constraints, the larger one is taken as the
constraint for the Computation Module. Acom, denotes the minimum data introduction interval for the
Computation Module; measured in local clock ticks.

3.10. PE Interface

The BIUs interact with the PEs using a first-in-first-out (FIFO) interface abstraction for input and
output. It is assumed that the BIUs can access this interface for read and write without the need to

25

directly coordinate their actions with the PEs. For PE-to-BIU transfers, the PEs are responsible for
making their data available to the BIUs at the input FIFO at or before the time at which it will be read.
For BIU-to-PE transfers, the BIUs simply write the data to the output FIFO as soon as it is ready. The
PEs are responsible for ensuring that no data is lost due to a buffer overflow.

The interaction between PEs and BIUs can be coordinated indirectly by proper selection of the
ROBUS timing parameters.

26

4. Point-to-point communication

This section examines the point-to-point communication between ROBUS nodes. The
Communication Module of each ROBUS node is composed of transmit and receive sub-modules. The
transmit sub-module consists of one or more separate transmitters to support broadcast transmissions.
The receive sub-module consists of a separate receiver for each node of the opposite kind. The
transmitters and receivers are expected to be generic components supporting event-triggered
communication. The granularity of a Communication Module transaction should be a ROBUS Message,
since the communication, processing, and diagnosis performed by the ROBUS protocols are based on
single-message transactions. For the transmitters, the reading of a new message and the beginning of its
transmission process is triggered by a send signal at the transmitter’s input interface. Similarly, the
receivers should be able to receive new messages whenever they arrive. The only expected
communication throughput constraint at the input interface of the transmitters is the minimum data
introduction interval (DII), which is the minimum number of clock ticks between consecutive requests to
send messages.

The communication system must be able to support the fixed-delay and synchronous communication
models. For some receiver designs, the output signals from the receiver are not synchronized to the
circuitry-driving signal generated by a local physical oscillator. Therefore, the Computation Module must
synchronize each received message with respect to the local oscillator before proceeding with further
processing. For the synchronous communication model, the processing of received messages is triggered
by the local-time clock. Therefore, a node must be able to buffer received messages until it is time to
process them. The timing design of the system must be able to handle the uncertainty in the time of
transmission, the transmission delay, and the signal synchronization delay.

In addition, this version of the ROBUS is intended to demonstrate that the bus can achieve a PE-
message throughput that approaches the available bandwidth at the physical links. For most
transmissions, it is possible to compute a local-time interval during which a receiver should expect to
receive the message. For low link data rates, the reception intervals for individual nodes do not overlap
and each message can be processed before the next one arrives. For high data rates, the reception
intervals of consecutive messages overlap and the processing must be pipelined in order to match the link
throughput. This section examines some critical aspects of pipelined communication.

4.1. Synchronization of asynchronous signals

Single-phase edge-triggered flip-flops used as building blocks in traditional synchronous sequential
digital circuits have a simple nominal timing behavior: If the signal at the data input is stable within a
specified window around the oscillator clock’s triggering edge, then the input value will propagate to the
output of the flip-flop and stabilize within some guaranteed time. The propagation delay of the flip-flops
is the time elapsed from the triggering edge of the oscillator clock until the output is stable. The window
around the oscillator clock’s triggering edge is characterized by the setup and hold time of the flip-flop.
The setup time is the minimum time that the input signal must remain stable before the triggering edge of
the oscillator clock in order for the output of the flip-flop to meet the nominal propagation delay. The
hold time is the minimum time that the input signal must remain stable after the triggering edge of the
oscillator clock in order for the output of the flip-flop to meet the nominal propagation delay.

The domain of an oscillator clock includes all the digital circuitry driven by that signal. A signal is

27

said to be synchronous with respect to a particular oscillator clock if the timing of the signal meets the
input setup and hold time constraints of the flip-flops driven by the oscillator clock. A signal that does
not meet these constraints is called asynchronous with respect to the given oscillator clock. Since the
oscillator clocks in the fault containment regions of the ROBUS are independent and the timing of their
transitions is not coordinated in any way, any signal crossing from one FCR to another is considered
asynchronous when it arrives at the receiving FCR.

Asynchronous signals must be synchronized to the oscillator clock before they can be processed.
Various mechanisms can be used to achieve this synchronization. Ultimately, however, consideration
must be given to the problem of violations of the setup and hold times of flip-flops reading the signal. A
flip-flop sampling an input that is not stable within the setup and hold window can enter a metastable
condition in which the output does not settle to a valid logic state within the nominal propagation delay.
If not handled properly, this can result in the generation of more asynchronous signals and the
propagation of errors throughout the receiving FCR.

The mean time between failure (MTBF) for a flip-flop reading an asynchronous input is (see
[XAPPO77]):

MTBF = e &t [(2%C,#fp*fe) 4.1)

where tygr denotes the time available for the metastability to resolve itself (i.e., time allowed by
downstream circuitry before reading the output of the flip-flop), fp denotes the input signal frequency
(2*fp is the input signal event rate), fc denotes the oscillator clock frequency, C; denotes the metastability
aperture of the flip-flop (which is related to the width of the window during which an input can cause a
metastability condition), and C2 denotes the resolution rate (which is related to the speed with which the
metastable condition will be resolved). Constants C1 and C2 are functions of the process technology and
flip-flop design. For current technology, the variables of the MTBF can be selected such that the
probability of metastability failures is extremely small.

In the following analysis it is assumed that the problem of metastability is properly handled by the
implementation of the ROBUS. Unless explicitly stated otherwise, it is assumed that the nodes have ideal
signal synchronizers, each consisting of a single flip-flop driven by the oscillator clock. These ideal flip-
flops have no metastable states and zero propagation delay. The timing behavior is as follows.

If the input changes before the triggering-edge of the oscillator clock, this latest input value will
propagate to the output as soon as the triggering-edge of the oscillator clock arrives. If the input
changes at exactly the same time as the triggering-edge of the oscillator clock, the input value will not
affect the output until the next triggering-edge of the oscillator clock (assuming that the input remains
constant).

4.2. Single-message communication

The communication of a message from a source node to a receiver node is modeled as a four step
process: (1) Send: The Computation Module of the source node signals the transmitter(s) in the
Communication Module that a message is ready for transmission; (2) Transmission: The transmitter
reads the message and transmits the corresponding signals over the transmission medium; (3) Delivery:
The link receiver gets the message from the transmission medium and signals the arrival to the signal

28

synchronizer; (4) Reception: The synchronizer signals the arrival of a new message to the Computation
Module. Figure 4.1 illustrates the point-to-point communication path. CLKg4 denotes the oscillator clock
at the receiving node. The message delivery delay is the time elapsed from the instant a transmitter
receives a send request until the message is presented at the output interface of the receiver. The message
reception delay is equal to the message delivery delay plus the additional time delay to synchronize the
received message to the oscillator clock at the receiving node.

Synchronizer
Send Transmission Delivery \L Reception
Link Link D
—> Transmitter > Receiver g Flip-Flop —>
CLKRy«

Figure 4.1: Conceptual point-to-point communication path

Symbols dpp; and dpp;, denote the minimum and maximum point-to-point message delivery delays,
respectively, measured in units of nominal clock ticks. vpp denotes the delivery precision (i.e., the
uncertainty in the point-to-point delivery delay) measured in units of nominal clock ticks. rpp; and 1ppy
denote the minimum and maximum point-to-point message reception delays, respectively, measured in
nominal clock ticks. epp denotes the reception precision (i.e., the uncertainty in the point-to-point
reception delay) measured in nominal clock ticks.

4.2.1. Reception delay

Let Ty denote the local time at which the source sends the message, and let t, denote the corresponding
real time. The real-time range of point-to-point message delivery is [ty + dppy, to + dppn]. Therefore, the
delivery precision is:

Vpp = dPP,h - dPP,l 4.2)

The minimum point-to-point message reception delay happens when the message is sampled by the
input synchronizer at exactly the same time it is delivered.

Ipp; = dpp (4.3)

The maximum point-to-point message reception delay happens when the message is sampled by the
input synchronizer exactly one tick after it is delivered. The worst case delay occurs when the oscillator
clock at the receiving node is slow.

tppp = dppn + (1 + Po) (4.4)

The real-time range of reception is [ty + rppy, to + I'pp]. Therefore, the reception precision is:

€pp = Ippy - I'ppy = [dppp + (1 + Po)] - dppy = 1 + Po + Vpp 4.5)

29

epp accounts for time-discretization errors, jitter and drift of the source and recceiver oscillators, as
well as differences in point-to-point communication delays due to differences in thie length of
communication wires or optical fibers.

Next, we define IMP(x;, x,), the Integer Mid-Point value (i.e., Rounded Average), as the integer
closest to the mid-point of x; and x,. IMP(x;, X,) is computed in two steps:

Step 1: x = (x; + x)/2
Step 2: IMP = round(x), with round(x) = | x] ifx < 15, or [xif x> 1%
Rpp denotes the expected reception delay:

Rpp = IMP(rpp), I'ppn) (4.6)

4.2.2. Estimate of the local-time at the source

Let Trev denote the local time at the receiver when it receives the message. To estimate the local time
at the source node, the receiver assumes that the message reception delay is Rpp ticks of its oscillator
clock. The estimated local time at the source node at the time of reception is:

Tsree = To + Rpp 4.7

The error in the local-time estimate is bounded as follows. Trcy occurs no earlier than [pp; nominal
ticks from the actual local time Tsgc g at the source:

Upp; = (1 + po)Repp - Ipp (4.8)
Trev occurs no later than ppp, nominal ticks from the actual local time Tgsrcg at the source:

Uppn = Ipph - Rpp/(1 + po) 4.9)

4.2.3. Expected local time of reception

Let mppsr denote a bound on the relative local-time skew between the source and the receiver nodes.
This bound is assumed to hold for the duration of the communication. The expected local time of
reception at the receiver is denoted by Trcy k.

Treve =To+ Rpp (4.10)

Due to the relative local-time skew and the uncertainty in the message-reception delay, the message
will arrive within some local-time interval containing Trcyvg. Let Apprey denote the local-time error in

Trev:
Apprev = Trev - Treve 4.11)

We want to determine the absolute maximum local-time error in Trcy, denoted by App rcvlabs-max:

30

ITrev — Treve | < App revlabs-max (4.12)

The value of Apprcvlwsmax 1S derived as follows. The bound on the local-time synchronization
between the source and the receiver nodes is expressed as:

lesre(T) - crev(T)I < Tpp sk (4.13)
where csre(T) and crev(T) denote the earliest real times at which the local times at the source and at the
receiver, respectively, reach value T. From the previous analysis, it is known that the real-time difference

between the time when the source reaches Trcv g and the time when the message is actually received Trcy
is bounded above and below by Upp, and Lipp,, respectively.

csre(Treve) - ey < Crev(Trev) < Csre(Trevp) + Wephp (4.14)
For local time Trcv g, inequality (4.13) can be re-expressed as:
csre(Treve) - Tepsr < Crev(Trevie) < Csre(Trevie) + Tep sk (4.15)

Combining inequalities (4.14) and (4.15), we get:

-Tpp s - Mpp1 < Crev(Trev) - Crev(Trevie) < Tppsr + Hepn (4.16)
So:

lerev(Trev) - Crev(Trev e)l < max(Tep s + Uep > Tep sk + HUppn) 4.17)
Equivalently:

lerev(Trev) - Crev(Trev e)l < Tpp sr + max(Upp , e n) (4.18)

Using the constraint that the local clocks are p-bounded, the definition of Apprcy, and the real time
duration of Apprcy ticks for the fastest allowed clock:

lApp revl/(1 + po) < Ierev(Trev) - Crev(Trevp)! (4.19)

Combining (4.18) and (4.19):

|Apprev | < (1 + Po)(Tep sk + max(Upp; , Uppp)) (4.20)

Since Apprcy 1S an integer, we can take the floor in (4.20):

|Apprev | < I_(l + Po)(Tpp,sr + Max(Upp, , HPP,h))J 4.21)

Therefore, the worst-case local-time difference between the actual time of reception Tgrcy and the
expected time of reception Trey g is:

App Revlabs-max = I_(l + Po)(Tpp sr + Max(Upp, , MPP,h))J (4.22)

31

4.3. Coordination for synchronous communication

For the synchronous ROBUS protocols, the scheduling of operations is based on a distributed
synchronous composition abstract model of the system in which a single oscillator drives a common
local-time clock and fixed-delay processes corresponding to the communication and computation
operations of the BIUs and RMUs. Communication during time-driven operations is time-triggered. For
each transmission, the sources and receivers use a particular local-time value as a distributed reference
event to coordinate their actions. Given specific bounds for the reception delay and the relative local-time
skew between sources and receivers, it is possible to coordinate the send and receive operations such that
the transmitted messages are received within a predetermined local-time range measured at the receivers.
The receivers can then apply a deskewing function and forward the received messages for processing at a
predetermined local time. By leveraging the previous analysis, it is possible to analyze the source-
receiver coordination problem using only global time (i.e., synchronized local time viewed from a global
perspective). Figure 4.2 illustrates the relevant timing events. Trgr denotes the reference local- time
value. Tsnp is the time at which the message is sent. Rpp is the expected reception delay. Trevp is the
expected time of reception. Wpegew 1S the size of the deskewing window. Wpegewpre 1S the pre-
expectation window (i.e., the size of the section of the deskewing window before the expected time of
reception). W peskewpost 18 the post-expectation window (i.e., the size of the deskewing window after the
expected time of reception). Tproc pegin denotes the time for the beginning of message processing.

| RPP |
[|
I | I WDeskew |
| |
| | [|] | >
| | [|] i
Trer Tsno /[\ Treve /[\ Tprochegin - Global Time
TRCV,E - WDeskew,pre TRCV,E + WDeskew,post

Figure 4.2: Timing events for point-to-point communication

A message from a good source is expected to arrive during the following closed time interval, which
includes all triggering edges of the local clock within the expected time range of reception:

[TRCV,E - APP,RCVIabs—maxa TRCV,E + APP,RCVIabs—max] (423)

The deskewing window includes all triggering edges of the clock within the expected time range of
reception, a total of 2App revlaps-max + 1 €dges. The deskewing window is intended to cover the duration of
all local clock counts corresponding to the triggering edges of the clock within the expected time range of
reception. The local clock counts corresponding to these triggering edges determine a time interval with a
duration of 2Apprevlbsmax + 1 ticks. The deskewing window extends for the real-time interval
corresponding to the following half-closed local-time interval:

[Trev e - Apprevhibsmaxs TrevE + AppreVabsmax + 1) (4.24)
So:

Weskew = 2App revlaps-max + 1 (4.25)
And:

32

WDeskeW,pre = APP,RCVlabs-max (426)
WDeskeW,post = APP,RCVlabs»max +1 (427)

For proper communication, the following constraints must be satisfied:

Trer < Tsnp (4.28)
Trer € Treve - Weskew,pre (4.29)
Treve = Tsap + Rep (4.30)
Treve + Wheskew,post < TprOC begin (4.31)

Relations (4.28) and (4.29) express basic time constraints for the common reference time. Relation (4.30)
captures the goal of source-receiver coordination, which is to receive the message at the expected time of
reception. Relation (4.31) is only relevant to the composition of operations at the receiving node. Let
Aggr.snp denote the delay from Tgrgr to Tsyp measured in local clock ticks.

Aggr-snp = Tsnp - Trer (4.32)
Let Agerrevwnp denote the delay from Trgr t0 Trev g - Weskew,pre measured in local clock ticks.
AggerrevwND = (Treve - Wheskew.pre) = TREF (4.33)

Let AREF—SNDImin and AREF—RCVWNDImin denote the minimum possible Values fOI' AREF—SND and AREF—RCVWNDa
respectively. Relation (4.30) can be re-expressed as follows:

Aggr-snp + Rpp = Aggr-revwnp + Weskew,pre (4.34)

We are interested in finding the values for Aggr.snp and Argrrevwap to achieve the earliest communication
satisfying (4.28), (4.29), and (4.30). We consider two cases.

Case 1: Aggrsnplmin + Rpp = Argrrevwnblmin + W beskew,pre

For this case, the message can be sent as soon as possible, but the window must be delayed to align it
with the expected time of reception.

ARgF-sND = AREF-SNDlmin (4.35)
AREF—RCVWND = AREF—SNDImjn + RPP - wDeskeW,pre (436)
Case 2: Argr-snplmin + Rep < ArgrrcvwNblmin + Weskew,pre

For this case, the window can be opened as soon as possible, but the message must be delayed to
achieve proper alignment.

AREF—SND = AREF—RCVWNDImjn + wDeskeW,pre - RPP (437)

33

AREF-RCVWND = AREF-RCVWNDmin (4.38)

4.4. Message streams

Each message in a message stream is processed independently. Let K denote the total number of
messages in the stream. i denotes the index for the messages in the stream, with 0 <i < K-1. Tgnp; is the
local time at which the source sends the i-th message of the stream. Trcvg; is the expected local time of
reception for the i-th message of the stream. Ag.m denotes the data introduction interval at the source
measured in local clock ticks.

The throughput capacities of the Communication Module and the Computation Module are
characterized by their respective minimum data introduction interval [De Micheli 94]. Let Acomm and
Acomp denote the minimum data introduction interval for the Communication Module and the
Computation Module, respectively. Acomm and Acomp are measured in local-clock ticks. For proper
processing, Agyeam must be greater than or equal to Acomm and Acomp.

Astream 2 maX(AComm7 AComp) (439)

4.4.1. Message delivery rate

We would like to compute the number of messages that can be delivered during a particular time
interval. We consider intervals during steady state transmission after the leading edge of the stream and
before the trailing edge. Because of the drift rate of the clocks, the observed number of delivered
messages can vary within a range.

Let Wgrcv denote the size of the observation window at the receiving node measured in local clock
ticks. Q denotes the number of messages delivered during the observation window. Asgc denotes the data
introduction interval measured in nominal clock ticks. wgrcy denotes the size of the observation window
at the receiving node measured in nominal clock ticks. Let tgejver; denote the real time at which message i
is delivered.

taetiver;i = Ldeliver,0 + 1AsrC (4.40)

Let toys; and tysn denote the beginning and end times, respectively, for the observation window. The
observer records received messages during the closed interval [tops » topsnl- tobst and topsn are related by the
size of the observation window.

tobs,h = tobs, 1 + Wrev (4.41)

The following constraints are applied in order to determine the number of observed messages.

tdeliver,O < tobs,l (442)
tdeliver,l 2 tobs,l (443)
tdeliver,Q < tobs,h (444)

34

taetiver,Q+1 > Tobs,h (4.45)

For these constraints, a total of Q messages in the index range 1 to Q are delivered within the
observation interval. The maximum value of Q is derived as follows. Relation (4.44) can be re-expressed
as:

taetiver0 + QAsre < topss + Wrev (4.46)
So:

Q < [(tobss - taeliver0) + Wrevl/Asre (4.47)
The right-hand side reaches its maximum value when typg - taelivero = Asrc. In that case, toetiver.1 = tops.1- SO:

Q < [Asrc + Wrev]/Asgre (4.48)
Since Q is an integer, we can take the floor on the right-hand side of the expression. Then:

Qlonax = LWrev/Asre + 1 (4.49)
For a fast source clock:

Asr fast = Astrean/ (1 + Po) (4.50)
For a slow receiver clock:

Wrevstow = (1 + Po)Wrev (4.51)
Therefore, for the maximum value of Q:

Qlnax = LOWrew/Agream)(1 + po)*] + 1 (4.52)
The minimum value of Q is derived as follows. Relation (4.45) can be re-expressed as:

taetivero + (Q + DAsrc > topss + Wrev (4.53)
So:

Q > [(tobs.s - taetiver.0) + Wrevl/Asre - 1 (4.54)
The right-hand side approaches its minimum value as tgys - tgeliver,0 @pproaches 0. So:

Q > Wrev/Asre - 1 (4.55)

Q is an integer strictly larger than wrey/Asge - 1. The smallest integer that satisfies this relation is given
by:

Qlinin = |_WRCV/ kSRCJ (4.56)

35

For a slow source clock:

Asrcstow = (1 + Po)Agtream (4.57)
For a fast receiver clock:

Wrev.fast = Wrev/(1 + po) (4.58)
Therefore, for the minimum value of Q:

Qluin = LWrev/Agream)/(1 + po)*J (4.59)

4.4.2. Expected local time of reception

The transmission times for the messages are related by the data introduction interval:

Tsnp.i = Tsnp.o + 1Asream (4.60)
At the receiver, the relation among the messages is similar.

Treviei = Trevieo + 1Agream (4.61)
Using the analysis for single-message communication:

Trevei = Tsnpi + Rep (4.62)

Let Trev; denote the actual time of reception for the i-th message. From the analysis of single-message
communication, Trey; and Trey g; are related as follows:

ITrev,i — Treviei | < Apprevlabs-max (4.63)
Re-expressing (4.63):

TrevEi - Apprevlabs-max S Trevi S Trevigi + App Revlabs-max (4.64)
The stream as a whole should be received within the following local time interval:

[TRCV,E,O - APP,RCVlabs-max ’ TRCV,E,K»I + APP,RCVlabs»max] (465)
Re-expressing (4.65):

[Trev e0 - Apprevlabs-max » Trev.go + (K-1)Agiream + App RVIabs-max] (4.66)

4.4.3. Message reception rate

The Agream cOmmunication parameter gives the nominal message reception rate for the stream in units
of ticks per message. An important consideration for the processing of message streams is the relation
between Agyeam aNd Apprevlbsmax- As presented above, Apprevlins.max Measures the uncertainty in the time

36

of reception of each message. In particular, the total uncertainty in the time of reception for a particular
message 1S 2App revlabs-max 10cal clock ticks centered around the expected time of reception. A message
from a good source can be received at any of the 2Apprevlbsmax + 1 triggering edges of the oscillator
clock in the corresponding reception interval. Let Z denote the number of messages from a good source
that can be received during a 2App reylabs-max interval. Then:

Z = L2APP,RCV|abs-max/AereamJ + 1 (467)

4.4.3.1. Non-overlapping reception intervals

If Agream > 2App revlabs-maxs the expected reception intervals for consecutive messages do not overlap or
even coincide end-to-end (i.e., no shared triggering edges in consecutive expected reception intervals).
For this case, Z = 1, which means that the messages of the stream are received as separate
communications with no interaction.

4.4.3.2. Overlapping reception intervals

If Aggeam £ 2Apprevibsmaxs the expected reception intervals for consecutive messages overlap or
coincide at the ends. For this case, Z > 1, which means that the interaction between the messages must be
taken into consideration. This is especially important for the diagnosis of timing errors.

4.4.4. Load size for a message reception buffer

We refer to the number of messages stored in a buffer as the load on the buffer. The function of the
message receive buffer is to collect the messages received at the Computation Process. For single-
message communication, it is expected that the processing of each message will begin at or before the
next message is received. The same can occur for a message stream in which the reception intervals for
consecutive messages do not overlap. In these cases, the load of the receive buffer is less than or equal to
1. From this point on, we only consider cases in which the processing of individual messages may begin
after the reception of subsequent messages in the stream. This includes cases of overlapping and non-
overlapping reception intervals.

Let Aprocpegin denote the delay in the beginning of processing of a message with respect to the
corresponding expected time of reception. We assume that the interval between the beginning of
processing of consecutive messages is the same as the data introduction interval for the message stream,
Agieam- Tproci denotes the local time at the beginning of processing for message i.

Trroci = Trevei + AprOC begin (4.68)

4.4.4.1. Combined message synchronization and buffering

Figure 4.3 illustrates the interconnection of functions for this case. CLKg4 denotes the oscillator clock
at the receiving node. STBg, denotes the strobe signal indicating that a new message is ready. The Link
Receiver transfers the messages to the Receive Buffer as soon as they are ready. The output of the
receiver is assumed to be asynchronous with respect to the oscillator clock. The Receive Buffer is an
asynchronous FIFO, which means that the push (i.e., write) and pop (i.e., remove) action signals are

37

synchronous with respect to different clock signals. In effect, in addition to being a buffer, the
asynchronous FIFO serves as a signal synchronizer for data crossing from one clock domain to the other.
Note that the data is read for computation one tick before it is popped from the receive buffer.

Asynchronous FIFO

Delivery \J/ To Computation
\ / Process
Liqk Receive
Receiver Buffer
STBgy CLKRgy

Figure 4.3: Reception using combined message synchronization and buffering

In order to ensure a read-after-write sequence at the Receive Buffer during normal operation, the
reading of a particular message by the Computation Process should be triggered after the end of the
corresponding reception interval. The following relation must hold in order to satisfy this property.

APROC,begin > APP,RCV |abs»max (4 . 69)

Again, note that the pop takes place one tick after the start of processing for each message. tgeliver.i
denotes the real time at which message i is written to the buffer. A message gets pushed at the same time
that it is delivered. With Aggc denoting the data introduction interval at the source node, tgejiver; i given by
the following equation.

taetiver;i = Laeliver,0 + 1AsrC (4.70)

Let t,pi denote the real time at which message i is popped from the buffer. The pop times for the
Computation Process are given by the following relation, with Azcy equal to the data introduction interval
at the Computation Process.

tpop,i = tpop,O + i7\'RCV (471)

Let Qqeiiver(t) denote the number of delivered messages by time t. Qpop(t) denotes the number of

popped messages by time t. Qagyne-Butrer(t) denotes the number of messages held by the asynchronous
Receive Buffer at time t.

For Qdeliver(t) :

Oa fOI‘ t< tdeliver,O
Quaetiver(t) = LIt - taetiver,0)/Asrc] + 1, for taetiver,0 < t < taetivero + (K-1)Asrc
K, for t > tyetvero + (K-1)Asrc 4.72)

38

For Qpop(1):

0, for t < topo
onp(t) = I—[(t - tpop,O)ﬂ\'RCV] + 1Ja for tpop,O <t< tpop,O + (K'l)kRCV
K, for t > tyopo + (K-DAgey (4.73)
For QAsyn—Buffer(t):
QAsyn»Buffer(t) = Qdeliver(t) - onp(t) (474)

To determine the maximum load for the receive buffer, we consider the case of a fast source clock and a
slow receiver clock. Thus:

Asre = Asre fast = Asirean/ (1 + Po) (4.75)

Arev = Arevisiow = (1 + Po)Agtream (4.76)
Assume that the first message is delivered at the earliest possible time. That is:

taetiver,0 = CReV(TReV,E0 - AP RCVIabs-max) 4.77)
The time of the first pop action is:

tpop.0 = CRev(Trev.E0 + ApROC pegin + 1)

= taeliver,0 + (1 + Po)(AppreVlabs-max + APROC begin + 1) (4.78)

Since the source has a faster clock, the number of buffered messages can increase up to the instant the last
message is delivered (i.e., t = tyetiverk-1 = taelivero + (K-1)Asrc). Thus, the maximum buffer load is given by
QAsync-Bufrer €Valuated at tycliverk-1-

Qasyn-Butfer(Dlmax = Qasyn-Buffer(Laetiver,k-1)

=K- L[(K'l)xSRC,fast - (1 + Po)(AppreVlabs-max + AproC begin + 1)1/ARcv stow + 1]

=K- I_(K'l)/(l + P0)2 - (APP,RCVIabs—max + APROC,begin + 1)/Astream + IJ (479)

4.4.4.2. Separate message synchronization and buffering

Figure 4.4 illustrates the interconnection of functions for this case. The receiver is assumed to hold
the message until it is processed by the synchronizer. For this synchronization mechanism, the input rate
must be slower than the local clock frequency to ensure at least one triggering edge of the oscillator clock
per delivered message. Thus, Agean must be must at least 2 (i.e., Aggeam = 2).

39

Synchronizer Synchronous FIFO To Computation

Delivery \i/ Reception \L Process
> Link \L > D \L | Receive /
Receiver Flip-Flop Buffer
CLKRy«

Figure 4.4: Reception using separate message synchronization and buffering
This configuration differs from the one using the asynchronous FIFO in that the synchronization is
performed by a dedicated synchronizer. At a minimum, this element introduces a one-tick delay in the
transfer of messages from the Link Receiver to the Receive Buffer. The worst-case delay in storing the
message in the buffer is two oscillator clock ticks. Therefore, compared to the timing of the circuit with

the asynchronous FIFO, the writing of streamed messages to the synchronous FIFO buffer begins at least
1 local tick later and can end up to 2 oscillator clock ticks later.

To determine the maximum load for the receive buffer, we consider the case of a fast source clock and
a slow receiver clock. The maximum load is assessed at the earliest time at which the last message of the

input stream can be written to the buffer. Let ty;.0 denote the earliest real time at which a received
message is written to the buffer.

twrite.0 = CReV(TrReV E0 - AppRCVhabs-max + 1) = taelivero + (1 + Po) (4.80)
The delivery time for the last message is:

tacliverK-1 = taeliver.0 + (K-1Asrc fust (4.81)
After delivery, the message must be synchronized and written to the buffer. In the fastest case, the

delivered message is immediately read by the synchronizer and presented to the buffer for loading, which
will then occur 1 tick later.

twrite. k-1 = taetiver,k-1 T (1 + Po) = taetiver,o + (K-1)Asrc fast + (1 + Po) (4.82)

Let Qsync-utter(t) denote the number of messages held by the synchronous receive buffer at time t. The
maximum load is given by:

QSync-Buffer(t)lmax = QSynC-Buffer(twrite,K-l)
=K- onp(twrile,K—l)
= K - L[(twrile,K»l - tpop,O)/}VRCV,slow] + IJ

=K - LK-1)/(1 + po)” - (Apprevhbsmax + Aproc pegin) Asream + 1] (4.83)

40

5. Clock synchronization protocols

This section examines the timing aspects for the local-time synchronization scheme. The diagnostic
system works in close coordination with the clock synchronization system to determine the status of the
bus and to specify the nodes eligible to participate in clock synchronization operations. That aspect of the
ROBUS is outside the scope of this section. The analysis presented here uses the fundamental fault-
tolerance concepts presented in Appendix A of [Torres 05] and the point-to-point communication
concepts presented in Section 4 of this document.

5.1. Clock synchronization system

The allowed range for the tick duration 7, of an oscillator is determined by the nominal tick duration T,
and the bound on the drift rate p,.

/(1 + o) T, < (14 po)To 5.1)
That is, an actual oscillator has a tick duration between 1/(1 + po) and (1 + py) nominal ticks.

The local-time clock of a node is essentially a counter driven by the local physical oscillator. The
local time is equal to the state of the counter. Resetting the counter sets the local time to 0. The clock
synchronization system enables the nodes to use the local time as a reference for the coordination of
distributed operations. A basic requirement for proper distributed coordination is that the relative clock
skews remain within known bounds. The relative skew between two clocks is the real time elapsed from
the instant one clock makes a particular state transition (i.e., the count reaches a particular value) until the
other clock makes the same transition. In general, the relative skew between two events is equal to the
real time elapsed between the occurrence of the events. Bounded relative skew is achieved by the
generation and preservation of approximate real-time agreement on the transitions of the local-time clock.
The synchronization protocols deliver high-precision distributed events used as references to reset the
local-time clocks. The state of a local-time clock indicates the time elapsed since the last
synchronization-reset event. The bound on the relative skew between synchronized clocks is tightest at
the time of the synchronization reset. After the reset, the local times can drift apart from each other and
from real time at rates determined by the drift rates of the oscillators. The clocks are resynchronized at
regular time intervals in order to ensure that the relative skews remain within known bounds.

Figure 5.1 illustrates the conceptual mode transitions for the clock synchronization system. Normally
there is a clique executing the Synchronization Preservation (SP) protocol to ensure that their relative
local-time skews remain within known bounds. Nodes in this mode are said to be in a synchronized
state. A goal of every node is to reach and remain in this state. In the context of the synchronization
system, nodes operating in a mode other than Synchronization Preservation are referred to as recovering
nodes. After a power-on enable or the detection of a failure, a node examines the activity on the bus. If a
clique is found, the recovering node transitions to Synchronization Acquisition (SA) mode in order to
synchronize its local time to the time of the clique. If a clique is not found, the recovering node
transitions to the Initial Synchronization (IS) mode. After achieving synchronization, the recovering node
transitions to Synchronization Preservation mode.

41

Power-on
enable

Failure

Is a clique
executing
SP present
on the bus?

No Yes

Synchronization Synchronization
Initialization (IS) Acquisition (SA)
Synchronization

Preservation (SP)

Figure 5.1: Conceptual mode transitions for the clock synchronization system

At the time of entry into the Synchronization Acquisition mode, the recovering node is in an
asynchronous state in which there is no significant relation between its local time and the local time of
the clique. The recovering node uses an Accept function to capture the synchronization events in the
agreement propagation phase of the Synchronization Preservation protocol. This requires that the Accept
function only receive synchronization messages from the same execution of the protocol. This is
accomplished by enabling the Accept function after a frame synchronization step in which the gap
between executions of the Synchronization Preservation protocol is found.

In general, a group of nodes enters the Initial Synchronization mode within a time interval of known
bounded duration. When a recovering node enters this mode, it expects that there is at least one node of
the opposite kind that also makes the transition within the bounded time interval. This interval duration is
in effect a bound on the relative local-time skew for the initializing nodes. Before the execution of the
synchronization protocol, these nodes are said to be in an unsynchronized state since the initial skew
bound can be relatively large compared to the skew after the execution of the protocol.

Figure 5.2 illustrates how the mode transitions are related in time. A group of nodes enters Initial
Synchronization with a large bound on the relative skew, denoted by m;s. At the end of the protocol
execution, the local time is set to O with the bound on the relative skew reduced to the level required for
normal operation, denoted by Tsp. At local time Tsp, the Synchronization Preservation protocol is
executed to ensure that the skew remains within the expected bound. This cyclic operation continues
until a failure occurs or the system is shut down. A recovering node in Synchronization Acquisition

42

trying to synchronize to the clique executes the Frame Synchronization (FS) protocol followed by the
Synchronization Capture (SC) protocol. The duration of the Frame Synchronization protocol execution
depends on factors like the total number of nodes of the opposite kind, the number of untrustworthy nodes
of the opposite kind active on the bus, the bound on the relative local-time skew of the nodes, and the
position of the start of the protocol relative to local time of the clique nodes. Synchronization Capture is
enabled immediately after the execution of Frame Synchronization is complete. The relative skew
achieved by Synchronization Acquisition is within the bounds of the skew for normal operation.

FS SC \ Tisp
Tus Tlsp Tsp Tsp TCSP\& Tlsp Tlsp
TPl s | TP se | TP s | TP se | TP sp | TP sp | T
)))) >
¢ ¢ O T Rearime
| | | | |
I I % I I I I I I I I >
O TSP 0 TSP O TSP 0 TSP 0 TSP 0
H_J Local Time
Resynchronization
period

Figure 5.2: Timing of mode transitions for the clock synchronization system

The Initial Synchronization, Synchronization Preservation, and Synchronization Capture protocols are
based on the same theory of distributed computation using Accept functions to process timing events.
Figure 5.3 illustrates the message flow graph examined in this section. This graph includes all the
processes and messages required for the three protocols.

PEs

BIUs

RMUs

Stage 1 | Stage 2 | Stage 3 Stage 4

Figure 5.3: Combined message flow graph for the analysis of the synchronization protocols

43

5.2. Stage 1: PO to P1

Figure 5.4 illustrates the detailed message flow graph for stage 1 in a 3x3 system (i.e., 3 BIUs and 3

RMUs).
Send INIT
at TPO

INIT
Processes —> PO

Stage 1

Figure 5.4: Detailed message flow graph for stage 1 in a 3x3 system

5.2.1. Expected time of reception for process P1

The analysis for point-to-point communication presented in the Section 4 of this document can be
leveraged for the problem of determining the local time range of reception of INIT messages in process
P1. This is covered in Section 5.9.2.1 for the Initial Synchronization and Synchronization Preservation
protocols.

5.2.2. Bound on the observed relative skew of received messages for process P1

Let IIp; rcv denote the bound on the relative skew observed in process P1 for the received messages
from process PO at trustworthy BIUs. Ilp; rcy is measured in local clock ticks. Ilp;rcy is used to check
for agreement among the received inputs and also to check agreement with the result of the Accept
output.

Let Tpy denotes the local time at which a BIU node sends the INIT message in process PO (i.e., the
local time when the source’s Computation Module signals the Communication Module to send the INIT
message). tpg; and tpy;, denote the earliest and latest real times, respectively, at which the trustworthy BIU
nodes send INIT in process PO. Let mp, denote the bound on the relative local-time skew for the
trustworthy BIUs. 7p is assumed to apply for the duration of the protocol execution. Tp, also bounds the
precision with which the trustworthy BIU nodes send the INIT messages.

Tpo = tpo,h - tpo,l 5.2)

Let tp; rcvy and tp; revn denote the earliest and latest real times, respectively, at which an INIT message
from a trustworthy BIU node can be received in process P1 at the trustworthy RMUs.

tp1,rCV, = tpos + Tppy (5.3)

tp1,RCV,h = tpon + Tpph 5.4

44

Let Tpy rev,y and Tpy rev i denote the earliest and latest local times, respectively, at which a node in process
P1 can receive messages from process PO at trustworthy BIU nodes. Ap; rcv denotes the measured skew
between the earliest and latest received messages from trustworthy BIU nodes (i.e., Ap;rcv = Tpircvai -
Tpircvy). We need to determine the maximum value of Aprcy. Using (5.3), (5.4), and the local-clock
function :

Crev(Tpirevin) - Crev(Trirev) < tpireva - tirevi (5.5)
From the constraint that the drift rate of the local clocks be py-bounded and the definition of Ap; gcy:

Api rev/(1 + Po) < Crev(Teirevin) - Crev(Teirev) (5.6)
Combining (5.5) and (5.6), and using the fact that Ap; rcv is an integer:

Apirev L1 + po)(torreva - torrev.)] (5.7)

ITp rev is given by the maximum value of Ap; rev:

Ipi rev = Api revlmax = L(l + Po)(tpircv i - tPl,RCV,l)J = L(l + Po)(Tpo + ePP)J (5.8)

5.2.3. Relative skew of the Accept outputs for process P1
Let Ap, denote the delay (in local-clock ticks) of the Computation Process in process P1 measured
from the local time of reception of the selected message until the Accept output is asserted. tp;,; and

tp1.an denote the earliest and latest real times, respectively, at which an Accept output in process P1 at the
trustworthy RMUs can be asserted.

tpi,a1 = tpoy + Ippy + Api/(1 + Po) 5.9
tpr.an = tron + Tppn + (1 + Po)Ap (5.10)

Therefore, the Accept functions of the trustworthy RMU nodes assert their outputs during a real-time
interval with the following duration:

tpr.an - teral = [Tpo + tppn + (1 + Po)Api] - [Tpps + Api/(1 + po)]
= Tpg + epp + [(1 + Po) - 1/(1 + po)] A (5.11)
Let AEV_P1 denote the set of asymmetric BIU eligible voters in process P1 at a trustworthy RMU node.
IAEV_P1I denotes the cardinality of AEV_P1. 7p; 4 denotes the bound on the real-time relative skew of

the Accept outputs in process P1 at the trustworthy RMUs. If IAEV_PI1I| = 0 for each trustworthy RMU
node, they essentially accept on the same message.

To1.ahagv pri=o0 = €pp + [(1 + po) - 1/(1 + po)]Ap; (5.12)
If IAEV_P1I # 0 for some trustworthy RMU, all we know with certainty is that the RMU nodes accept on

a message from a trustworthy BIU node or a message from an untrustworthy BIU node flanked by
messages from trustworthy BIU nodes.

45

Tp1,alaABv_p1120 = Tlpo + €pp + [(1 + Po) - 1/(1 + po)]Ap; (5.13)

From this point on, unless otherwise stated:

Tp1,a = Tp1 Almax = Tp1,alAEV_P1120 (5.14)

5.3. Stage 2: P1 to P2

Figure 5.5 illustrates the detailed message flow graph for stage 1 and 2 in a 3x3 system.

Send INIT
at TP()
INIT

INIT
Processes —> PO
} \ }

Y Y

Stage 1 Stage 2

Figure 5.5: Detailed message flow graph for stages 1 and 2 in a 3x3 system

5.3.1. Effective reception delay for process P2

Let Bpy denote the send delay for process P0. We want to compute the effective reception delay for
process P2. In general, this delay is measured from the time of some local event to the time of reception.
We use Tpy, the local time of transmission of the INIT message in process PO, as the local reference event
to measure the reception delay from process PO to process P2. Note that instead of the start of the
protocol, we choose the send time for process PO as the reference time to measure the reception delay.
This approach enables the analysis of the synchronization protocols independently of Bpy. Bpg is
computed based on a single-stage point-to-point synchronous communication model (see Section 5.9.2.1).

We need to determine the earliest and latest real times of reception for process P2. Let Bp; denote the
send delay for process P1. tp,rcvy and tporev denote the earliest and latest real times, respectively, at
which an INIT message from a trustworthy RMU node can be received in process P2 at the trustworthy
BIUs.

tparev. = terar + Bei/(1 + Po) + rppy = teoy + 2rpp; + (Apr + Bei)/(1 + po) (5.15)
tparev.h = tpran + (1 + Po)Bp1r + e = tros + Tpo + 21ppp + (1 + Po)(Apr + Bpy) (5.16)
Irpop2; denotes the minimum effective message-reception delay for INIT messages in process P2 and is

measured from the latest time at which the trustworthy BIU nodes can send INIT to the earliest time at
which the BIU nodes can receive INIT messages from the trustworthy RMU nodes.

46

Tpo-p2.1 = tparev - tron = 20pp1 + (Apr + Bpi)/(1 + po) - Tteo (5.17)
Ipop2n denotes the maximum effective message-reception delay for INIT messages in process P2 and is

measured from the earliest time at which the trustworthy BIU nodes can send INIT to the latest time at
which the BIU nodes can receive INIT messages from the trustworthy RMU nodes.

Tpo-p2.n = trarev.n - tpog = Tpo + 20ppp + (1 + Po)(Apy + Bpr) (5.18)
The expected reception delay for process P2 is:

Rpo-p2 = IMP(rpo.p2,1 , Tpo-p2n) (5.19)
The total effective uncertainty in the real time of reception of the INIT messages in process P2 is:

Tpo-p2,h - Tpo-p2,1 = 2T0po + 2€pp + [(1 + Po) - 1/(1 + po)1(Ap; + Bpy) (5.20)

5.3.2. Expected time of reception for process P2
The BIU nodes expect to receive INIT messages at local time Tp, rcv k-
Troreve = Tro + Rpop2 (5.21)

The real-time error for Tp, rcv g is bounded as follows. A BIU node will receive an INIT message from a
trustworthy RMU node no earlier than ppy.p,; nominal ticks from Tp, v g

Upo-p2,1 = (1 + Po)Rpo-p2 - Tpo-payi (5.22)

A BIU node will receive an INIT message from a trustworthy RMU node no later than ppgp,;, nominal
ticks from Tp; rcv g

Wpo-p2,n = Ipo-p2,n - Rpo-pa/(1 + Po) (5.23)

Let Tpyrev denote the actual local time at a BIU node when an INIT message from a trustworthy RMU
node is received. In addition, let Ap, rcy denote the local-time error in Tpy rey.

Apyrev = Trarev - Trarevie (5.24)

We want to determine a bound for the local-time error in the actual time of reception in process P2,
denoted by Apz revlmax-

ITporev - Trorevel € Apzrevimax (5.25)
Aps revlmax 18 derived as follows. We know that the difference between the expected and the actual time of

reception at a BIU node for INIT messages from the trustworthy RMU nodes is bounded by Lipgpy; and
Wpo-p2.n, SUCh that:

crev(Troreve) - Mpo-p2i < Crev(Trarev) < Crev(TrorevE) + Upo-p2n (5.26)

47

So:

lerev(Tearev) - Crev(Trarev e)l € max(Upopai > Hpo-p2n) (5.27)
From the constraint that the local clocks be p-bounded and (5.24):

lAps revl/(1 + Po) < Icrev(Tr2rev) - Crev(TrarevE)l (5.28)
Combining (5.27) and (5.28):

|Apy revl < (1 + po)max(Upo-p2,1 » Mpo-p2,n) (5.29)

Since Ap, rev 1S an integer:

|Apy revl < L(1 + Po)max (Upo-p2,i MPO»PZ,h)J (5.30)
Therefore:
Aps revlmax = L(l + Po) max(Wpo-p2,1 5 MPO-PZ,h)J (5.31)

5.3.3. Bound on the observed relative skew of received messages for process P2

Let IIp, rcv denote the bound on the relative skew observed in process P2 for the received messages
from process P1 at trustworthy RMUs. Ilp,rcy is measured in local clock ticks. Ilp,rey is used to check
for agreement among the received inputs and also to check agreement with the result of the Accept
output.

The worst case relative skew for received messages occurs when there are asymmetric eligible voters
in process P1 at the trustworthy RMU nodes. The bound on the relative skew of the Accept outputs in
process P1 is mp; 4. The additional uncertainty in the reception delay measured from the time of the
Accept outputs to the time of reception in process P2 is epp + [(1+po) - 1/(1+pg)]1Bp;.

Iporev = L(l + Po)(tparcvn - tPZ,RCV,l)J
=L(1 + po) (Ttp1.a + €pp + [(1 + po) - 1/(1 + po)IBpi }]

Ipy rev = L(l + Po){Tpo + 2epp + [(1 + po) - 1/(1 + po)1(Ap; + BPI)}J (5.32)

5.3.4. Relative skew of the Accept outputs for process P2

Let AEV_P2 denote the set of asymmetric RMU eligible voters in process P2 at a trustworthy BIU
node. Let Tp, o denote the bound on the real-time relative skew of the Accept outputs in process P2 at
trustworthy BIUs. Ap, denotes the delay (in local-clock ticks) of the Computation Process in process P2
measured from the local time of reception of the selected message to the local time when the Accept
output is asserted. If IAEV_P1I= 0 for each trustworthy RMU node, the trustworthy BIU nodes may have
asymmetric RMU nodes in their sets of eligible voters for process P2 (i.e., IAEV_P2| # 0 for some
trustworthy BIUs). In this case, the trustworthy BIU nodes accept within the time range delimited by
messages from trustworthy RMU nodes.

48

T2, ahAEV P21 20 = Tp1aliagy pi =0 + €pp + [(1 + po) - 1/(1 + Po)](Bp1 + Ap2)
= 2epp + [(1 + po) - /(1 + Po)I(Ap1 + Bpi + Apy) (5.33)
If IAEV_P1I # 0 for some trustworthy RMU nodes, the trustworthy BIU nodes do not have asymmetric

RMU nodes in their sets of eligible voters for process P2 (i.e., IAEV_P2| = 0 at each trustworthy BIU). In
this case, the BIU nodes essentially accept on the same message.

T2, ahagv p2i=0 = €pp + [(1 + po) - 1/(1 + po)]Apa (5.34)
From this point on, unless otherwise stated:

Tp2,A = Tp2,Almax = Tp2,AllAEY P21 0 (5.35)

5.4. Stage 3: P2 to P3

Figure 5.6 illustrates the detailed message flow graph up to stage 3 for a 3x3 system.

Send INIT
at TP()

INIT INIT ECHO
Processes —> PO

}\ }\ }
Y \ \

Stage 1 Stage 2 Stage 3

Figure 5.6: Detailed message flow graph for stages 1 through 3 in a 3x3 system

5.4.1. Effective reception delay for process P3

We need to determine the earliest and latest real times of reception of ECHO messages in process P3.
Let Tp; a; denote the local time at RMU node i when it asserts the output of its Accept function in process
P1. Let tp; o) and tp; o, denote the earliest and latest real times, respectively, at which the trustworthy
RMUs can assert the Accept outputs in process P1.

Tp1.a = tpran - tp1AL (5.36)
Let Bp, denote the send delay for process P2. tpsrcv and tps reyn denote the earliest and latest real times,
respectively, at which ECHO messages from trustworthy BIU nodes can be received by an RMU node in
process P3.

tp3rev, = tpiag + 21pp) + (Bpi + Apy + Bpo)/(1 + po) (5.37)

tpsrev.h = tpian + 21ppn + (1 + Po)(Bpi + Apy + Bpy) (5.38)

49

rp1.p3,; denotes the minimum effective message-reception delay for ECHO messages in process P3 and is
measured from the latest time at which trustworthy RMU nodes can assert their Accept(INIT) output to
the earliest time at which the RMU nodes receive ECHO messages from the trustworthy BIU nodes.

Ip1p3) = tearevi - tpran = 2rpp; + (Bpi + Apa + Bpo)/(1 + po) - Te1 4 (5.39)
rp1.p3,n denotes the maximum effective message-reception delay for ECHO messages in process P3 and is

measured from the earliest time at which the trustworthy RMU nodes can assert its Accept(INIT) output
to the latest time at which the RMU nodes can receive ECHO messages from the trustworthy BIU nodes.

p1p3n = tparevin = te1.al = Tpia + 2rppp + (1 4 Po)(Bpi + Apz + Bpo) (5.40)
The expected reception delay for process P3 is:

Rpi.p3 = IMP(1p1.p3) 5 Tp1-p3 1) 5.41)
The effective uncertainty in the real time of reception of the ECHO messages in process P3 is:

Tpip3n - Ipi-p31 = 2Ty a + 2€pp + [(1 + Po) - 1/(1 + po)1(Bpi + Apz + Bp) (5.42)

5.4.2. Expected time of reception for process P3
RMU node 1 expects to receive ECHO messages at local time Tp3 rev Eji-
Tpsreviei = Triai + Rpips (5.43)

The real-time error for Tps rcv g; 1S bounded as follows. RMU node i will receive an ECHO message from
a trustworthy BIU node no earlier than pp; p3; nominal ticks from Tp; rev g

Upip31 = (1 + Po)Rpi.p3 - Tpip3y (5.44)

RMU node i will receive an ECHO message from a trustworthy BIU node no later than [p, p3};, nominal
ticks from Tp; rev Eji-

Upi-p3n = Tpi-p3n - Rpipa/(1 + Po) (5.45)

We want to determine the maximum local-time error for the actual time of reception at the RMU nodes,
denoted by Ap; rcvlmax-

ITp3rev - Trarevel € Apsrevimax (5.46)

Following the analysis for process P2:

Ap3 revlmax = L(l + Po)max(Upi-ps I-LPI»PS,h)J (5.47)

5.4.3. Bound on the observed relative skew of received messages for process P3

Let Ilp; rcy denote the bound on the relative skew observed in process P3 for the received messages

50

from trustworthy sources in process P2. Ilp;rcy is measured in local clock ticks. Ilpsgrcy is used to check
for agreement among the received inputs and also to check agreement with the result of the Accept
output.

The worst case relative skew for received messages occurs when there are asymmetric eligible voters
in process P2 at the trustworthy BIU nodes. The bound on the relative skew of the Accept outputs in

process P2 is mpy 4. The additional uncertainty in the reception delay measured from the time of the
Accept outputs in process P2 to the time of reception in process P3 is epp + [(14+po) - 1/(1+po)]Bp,.

Ip3 rev = I_(l + Po)(tp3revin - tP3,RCV,l)J
=L(1 + po){Tp.a + epp + [(1 + po) - 1/(1 + py)IBp2} |

= L(l + po){3epp + [(1 + po) - 1/(1 + po)I(Ap; + Bp; + Apr + sz)}J (5.48)

5.4.4. Relative skew of the Accept outputs for process P3

Let AEV_P3 denote the set of asymmetric BIU eligible voters in process P3 at a trustworthy RMU
node. Let 7p; o denote the bound on the real-time relative skew of the Accept outputs in process P3 at the
trustworthy RMUSs. Ap; denotes the delay (in local-clock ticks) of the Computation Process in process P3
measured from the local time of reception of the selected message to the local time when the Accept
output is asserted. If IAEV_P2| = 0 for each trustworthy BIU node, the trustworthy RMU nodes may have
asymmetric BIU nodes in their sets of eligible voters for process P3 (i.e., IAEV_P3l # 0 for some

trustworthy RMU nodes). In this case, the trustworthy RMU nodes accept within the time range
delimited by messages from trustworthy BIU nodes.

T3, ahAEV P3120 = Tp2.aliay par=0 + €pp + [(1 + Po) - 1/(1 + Po)](Bpz + Ap3)
=2epp + [(1 + po) - /(1 + po)1(Apz + Bpz + Aps) (5.49)
If IAEV_P2I # 0 for some trustworthy BIU nodes, the trustworthy RMU nodes do not have asymmetric
BIU nodes in their sets of eligible voters for process P3 (i.e., IAEV_P3I| = 0 for each trustworthy RMU
node). In this case, the RMU nodes essentially accept on the same message.
T3 alaev_p3i=0 = epp + [(1 + Po) - 1/(1 + po)]Aps (5.50)

From this point on, unless otherwise stated:

Tp3,A = Tp3,Almax = T3 AllAEV_P312 0 (5.51)

5.5. Stage 4: P3 to P4

Figure 5.7 illustrates the detailed message flow graph up to stage 4 for a 3x3 system.

51

Send INIT
at TPO
ECHO

INIT INIT ECHO
Processes —> PO 2
Y Y
Stage 1 Stage 2 Stage 3 Stage 4

Figure 5.7: Detailed message flow graph for stages 1 through 4 in a 3x3 system

5.5.1. Effective reception delay for process P4

We need to determine the earliest and latest real time of reception of ECHO messages from
trustworthy RMU nodes by the BIU nodes in process P4. Let Tp, a; denote the local time at which
trustworthy BIU node j asserts the output of its Accept function for process P2. tpya; and tpy o, denote

the earliest and latest real times, respectively, at which the trustworthy BIUs can assert their Accept
outputs in process P2.

Tpo,a = tpoan - tp2,ALl (5.52)

Let Bp; denote the send delay for process P3. tpsrcy, denotes the earliest real time at which ECHO
messages from trustworthy RMU nodes can be received by a BIU node in process P4.

tparev, = tpoa + 2rpp; + (Bpa + Aps + Bp3)/(1 + po) (5.53)

tparcv.n denotes the latest real time at which ECHO messages from trustworthy RMU nodes can be
received by a BIU node in process P4.

tparcv.h = tp2.an + 2rppp + (1 + Po)(Bpz + Aps + Bp3) (5.54)
Ipy.ps; denotes the minimum effective message-reception delay for ECHO messages in process P4 and is
measured from the latest time at which the trustworthy BIU nodes can assert their Accept(ECHO) outputs

to the earliest time at which the BIU nodes can receive ECHO messages from the trustworthy RMU
nodes.

Tp2pa) = tparcvi - teaan = 2rpp1 + (Bpa + Aps + Bp3)/(1 + o) - o4 (5.55)
Ipo.pan denotes the maximum effective message-reception delay for ECHO messages in process P4 and is
measured from the earliest time at which the trustworthy BIU nodes assert their Accept(ECHO) outputs to
the latest time at which the BIU nodes can receive ECHO messages from the trustworthy RMU nodes.

Ip2-pah = tparcv,h - tp2,a1 = Tpo,a + 2Ippp + (1 + Po)(Bpr + Aps + Bp3) (5.56)

The expected reception delay for process P4 is:

52

Rpo-ps = IMP(rpp.pa » Tp2-pan) (5.57)
The effective uncertainty in the real time of reception of the ECHO messages in process P4 is:

Tpo-pah - Tp2-pat = 2Tpoa + 2€pp + [(1 + Po) - 1/(1 + po)1(Bpz + Apz + Bps) (5.58)

5.5.2. Expected time of reception for process P4
BIU node j expect to receive ECHO messages at local time Tps rev g
Trarcviej = Traaj + Reops (5.59)

The real-time error for Tpyrcv g 1S bounded as follows. BIU node j will receive an ECHO message from a
trustworthy RMU node no earlier than Up,.ps; nominal ticks from Tps rev g

Upo-pai = (1 + Po)Rpo.ps - Tpopa (5.60)

BIU node j will receive an ECHO message from a trustworthy RMU node no later than Up, ps, nominal
ticks from Tps rev g

WUp2-pan = Tp2-pan - Rpopa/ (1 + Po) (5.61)

We want to determine the maximum local-time error for the actual time of reception at the BIU nodes in
process P4, denoted by Apy rcvlmax-

ITpsrcv - Trarev.el € Aparcvimax (5.62)

Following the analysis for process P2:

Apyrevlmax = |_(1 + Po)max(Lpz-ps; HPz-P4,h)J (5.63)

5.5.3. Bound on the observed relative skew of received messages for process P4

Let Ilpyrcv denote the bound on the relative skew observed in process P4 for the received messages
from process P3 at trustworthy RMUs. Ilpsrcy is measured in local clock ticks. Ilpsgrey is used to check
for agreement among the received inputs and also to check agreement with the result of the Accept
output.

The worst case relative skew for received messages occurs when there are asymmetric eligible voters
in process P3 at trustworthy RMU nodes. The bound on the relative skew of the Accept outputs in
process P3 at the trustworthy RMUSs is 7p; o. The additional uncertainty in the reception delay measured
from the time of the Accept outputs in process P3 to the time of reception in process P4 is epp + [(1 + po) -
1/(1 + po)1Bps.

ey rey = L(1 + Po)(tparcvin - tearev,)]

=L(1 + po) {73 4 + epp + [(1 + Po) - 1/(1 + po)IBps}J

53

= L(l + po){3epp + [(1 + po) - 1/(1 + po)I(Apz + Bpr + Aps + BP3)}J (5.64)

5.5.4. Relative skew of the Accept outputs for process P4

Let AEV_P4 denote the set of asymmetric RMU eligible voters in process P4 at a trustworthy BIU
node. Let mpy 4 denote the bound on the real-time relative skew of the Accept outputs in process P4 at the
trustworthy BIUs. Aps denotes the delay (in local-clock ticks) of the Computation Process in process P4
measured from the local time of reception of the selected message to the local time when the Accept
output is asserted. If IAEV_P3I| = 0 for each trustworthy RMU node, the trustworthy BIU nodes may have
asymmetric RMU nodes in their sets of eligible voters for process P4 (i.e., IAEV_P4l # 0 for some
trustworthy BIU nodes). In this case, the BIU nodes accept within the time range delimited by messages
from trustworthy RMU nodes.

T4 ahAEV P4t 20 = Tp3 aliagy pai=0 + €pp + [(1 + Po) - /(1 + Po)](Bps + Aps)
= 2epp + [(1 + po) - 1/(1 + po)1(Aps + Bps + Aps) (5.65)
If IAEV_P3I # 0 for some trustworthy RMU nodes, the trustworthy BIU nodes do not have asymmetric
RMU nodes in their sets of eligible voters for process P4 (i.e., IAEV_P4l = 0 for each trustworthy BIU
node). In this case, the BIU nodes essentially accept on the same message.
T Alaev_par=0 = epp + [(1 + Po) - 1/(1 + Po)]Aps (5.66)

From this point on, unless otherwise stated:

Tpa A = Tops Almax = Tpa allAEV Pai 0 (5.67)

5.6. Synchronization capture

Figure 5.8 illustrates the detailed message flow graph for the synchronization-capture stages in a 3x3
system. The nodes executing processes P3C and P4C are called recovering nodes.

BIU RMU RMU BIU

ONONG®)

INIT ECHO
Processes —> P2 P3C P3 P4C
Stage 3 Stage 4

Figure 5.8: Detailed message flow graph for synchronization-capture stages in a 3x3 system

54

5.6.1. Bound on the observed relative skew of received messages for process P3C

Let Ilpscrey denote the bound on the relative skew observed in process P3C for the received
messages from process P2 at trustworthy BIUs. Ilpscrev is measured in local clock ticks. Ilpscrev 1S
used to check for agreement among the received inputs and also to check agreement with the result of the
Accept output.

The nodes in process P3C receive ECHO messages from process P2 at trustworthy BIUs in the same
real time range as nodes executing process P3. Therefore:

Ipscrev = Hpsrev (5.68)

5.6.2. Relative skew of the Accept outputs for process P3C

Recovering RMU nodes synchronize using the ECHO messages from process P2 of the
Synchronization Preservation protocol. Because the recovering nodes may have asymmetric faulty nodes
in their sets of eligible voters, all we know is that they will accept within the time range delimited by
ECHO messages from trustworthy BIU nodes. Let mtpsc 4 denote the bound on the real-time relative skew
of the Accept outputs in process P3C at the good recovering RMUSs. Let Ap;c denote the delay (in local-
clock ticks) of the Computation Process in process P3C measured from the local time of reception of the
selected message to the local time when the Accept output is asserted. We assume that the delay of the
Computation Process in process P3C is the same as in process P3.

Apsc = Aps (5.69)

The worst-case real-time relative skew occurs when the trustworthy BIU nodes and the recovering RMU
nodes simultaneously have asymmetric nodes in their sets of eligible voters. For that case:

Tpsc.a = Tpa.a + €pp + [(1 + po) - 1/(1 + po)](Bpz + Apsc)

=3epp + [(1 + Po) - 1/(1 + po)I(Api + Bpi + Ap, + Bps + Aps) (5.70)

5.6.3. Bound on the observed relative skew of received messages for process P4C

Let Ilpscrev denote the bound on the maximum relative skew observed in process P4C for the
received messages from process P3 at trustworthy RMUs. Ilpscrev is measured in local clock ticks.
ITpscrev is used to check for agreement among the received inputs and also to check agreement with the
result of the Accept output.

The nodes executing process P4C receive ECHO messages from process P3 at trustworthy RMUs in
the same time range as nodes executing process P4. Therefore:

Ipscrev = Hpsrev (5.71)

5.6.4. Relative skew of the Accept outputs for process P4C

Recovering BIU nodes synchronize using the ECHO messages from process P3 of the

55

Synchronization Preservation protocol. Because the recovering BIUs may have asymmetric faulty nodes
in their sets of eligible voters, all we know is that they will accept within the time range delimited by
ECHO messages from trustworthy RMU nodes. Let Tipysc o denote the bound on the real-time relative
skew of the Accept outputs in process P4C at the good recovering BIUs. Let Apsyc denote the delay (in
local-clock ticks) of the Computation Process in process P4C measured from the local time of reception
of the selected message to the local time when the Accept output is asserted. We assume that the delay of
the Computation Process in process P4C is the same as in process P4.

Apsc = Apy (5.72)

The worst-case real-time relative skew occurs when the trustworthy RMU nodes and the recovering BIU
nodes simultaneously have asymmetric nodes in their sets of eligible voters. For that case:

Tpac,a = Tpz A + €pp + [(1 + Po) - 1/(1 + po)|(Bps + Apac)

=3epp + [(1 + po) - 1/(1 + po)1(Apy + Bpy + Apz + Bps + Apy) (5.73)

5.7. Resetting the local time

5.7.1. Relative skew of the local-time reset for process P4

Let Tpy aj denote the local time of the Accept output in process P4 at trustworthy BIU j. Hps denotes
the synchronization-reset delay applied by the BIU nodes resetting with respect to the Accept output in
process P4. Ty, denotes the local time at which the next cycle begins for BIU node j synchronizing
with respect to process P4.

Teanj=Tpsn;+ Hps (5.74)

Tps y denotes the bound on the relative skew of the local-time reset for BIU nodes synchronizing with
respect to process P4. Then:

Tpam = Tpaa + [(1 + Po) - 1/(1 + po)|Hps

=2epp + [(1 + po) - 1/(1 + po)|(Apz + Bpz + Aps + Hps) (5.75)

5.7.2. Relative skew of the local-time reset for process P4C

Let Tpsc,aj denote the local time of the Accept output in process P4C at a good recovering BIU j. Hpyc
denotes the synchronization-reset delay applied by the nodes resetting with respect to the Accept output in
process P4C at the good recovering BIUs. Tpucpn;j denotes the local time at which the next cycle begins
for BIU node j synchronizing with respect to process PAC. The BIU nodes executing process PAC apply
the same synchronization-reset delay as the nodes executing process P4.

HP4C = HP4 (5 -76)

So:

56

Treacnj = Tracaj+ Hpsc = Tracaj+ Hps (5.77)
The bound on the relative skew of the Accept output for process P4C at the good recovering BIUs is

given by Tpyc a. Tlpsc.y denotes the bound on the relative skew of the local-time reset for good recovering
BIU nodes synchronizing with respect to process P4C. Then:

Tpac = Topac,a + [(1 + Po) - 1/(1 + po)|Hps

=3epp + [(1 + po) - 1/(1 + po)1(Ap: + Bpy +Aps + Bps + Aps + Hps) (5.78)

5.7.3. Reset delay for process P3

Let Tps o,; denote the local time of the Accept output in process P3 at trustworthy RMU i. Hp; denotes
the synchronization-reset delay applied by the nodes resetting with respect to the Accept output in process
P3. Tps ;i denotes the local time at which the next cycle begins for RMU i synchronizing with respect to
process P3.

Tp3mi = Tpsai+ Hps (5.79)
Hp; is the expected delay from the time when the RMU nodes in process P3 assert their Accept output
until the BIU nodes synchronizing with respect to process P4 reset their local-time clocks. The bound on
the relative skew of the Accept outputs in process P3 at the trustworthy RMUs is given by Ttp3 o. tps o) and

tps.an denote the earliest and latest real times, respectively, at which the Accept outputs can be asserted in
process P3 at the trustworthy RMUs. So:

Tp3.a = tp3an - tp3.All (5.80)
tpamilps.a and tpy gulps 4 denote the earliest and latest real times, respectively, at which a trustworthy BIU

node synchronizing with respect to process P4 can reset its local-time clock. tpsyilps; o and tpsyplps.a are
measured with respect to the Accept outputs in process P3 at the trustworthy RMU .

tpamilpza = trz ar + Teps + (Bps + Apy + Hpa)/(1 + po) (5.81)
tpamnlpsa = tpsan + Iepn + (1 + Po)(Bes + Aps + Hps) (5.82)
Let hp;; denote the minimum effective delay from the time the Accept output in process P3 at trustworthy

RMUs is asserted to the time a trustworthy BIU node resets its local-time clock with respect to process
P4.

hp3; = teamilps A - tr3.an
=r1pp; + (Bps + Aps + Hps)/(1 + o) - Tp3 A (5.83)

hps, denotes the maximum effective delay from the time the Accept output in process P3 at trustworthy
RMUs is asserted to the time a trustworthy BIU node resets its local-time clock with respect to process
P4.

hp3 = tpa pnlp3 A - th3.al

57

=Tp3a + Ippp + (Bps + Aps + Hpa)(1 + po) (5.84)
Hp; is given by:
Hps; = IMP(hps; , hps) (5.85)
The real-time error for Tpsy; is bounded as follows. A trustworthy BIU node can reset its local-time

clock with respect to process P4 no earlier than [ip; ;) nominal ticks from local time Tp; y; at a trustworthy
RMU node synchronizing with respect to process P3.

Up3,p = (1 + po)Hps - hps (5.86)

A trustworthy BIU node can reset its local-time clock with respect to process P4 no later than pp; gy
nominal ticks from local time Tp; yy; at a trustworthy RMU node synchronizing with respect to process P3.

Wp3 10 = hpsn - Hps/(1 + po) (5.87)
Note that this analysis also applies to the real-time error for Tp; y; with respect to the local-time reset of
nodes synchronizing in process P4C.

5.7.4. Relative skew of the local-time reset between processes P3, and P4 or P4C

Let Tpspsn denote the bound on the relative skew of the local-time reset between RMU nodes
synchronizing with respect to process P3 and BIU nodes synchronizing with respect to process P4.

Tp3-pa.rr = MaxX(Up3 p1> Mp3) (5.88)
Tpapscy denotes the bound on the relative skew of the local-time reset between RMU nodes

synchronizing with respect to process P3 and BIU nodes synchronizing with respect to process PAC. Tps.
pa.u also applies here.

Tp3.p4cH = Tlp3-P4.H (5.89)

5.7.5. Relative skew of the local-time reset for process P3
The bound on the relative skew of the Accept outputs in process P3 at trustworthy RMUs is given by

Tp3.A- Tp3.p denotes the bound on the relative skew of the local-time reset for trustworthy RMU nodes
resetting with respect to the Accept output in process P3.

Tp3,u = Tp3,a + [(1 + Po) - 1/(1 + po) [Hps

=2epp + [(1 + po) - 1/(1 + po)I(Apz + Bpy + Aps + Hp3) (5.90)

5.7.6. Relative skew of the local-time reset for process P3C

Let Tpsc a; denote the local time of the Accept output in process P3C at good recovering RMU i. Hp;c
denotes the synchronization-reset delay applied by the RMU nodes resetting with respect to the Accept

58

output in process P3C. Tpscp; denotes the local time at which the next cycle begins for RMU node i
synchronizing with respect to process P3C. The RMU nodes executing process P3C apply the same
synchronization-reset delay as the RMU nodes executing process P3.

Hpsc = Hps (5.9
So:

Tescni = Tracai + Hpsc = Tracai + Hes (5.92)
The bound on the relative skew for the Accept outputs in process P3C at the good recovering RMUs is

given by Tpsca. Tpscn denotes the bound on the relative skew of the local-time reset for the nodes
synchronizing with respect to the Accept output in process P3C.

Tpsc.n = Tpsc,a + [(1 + Po) - 1/(1 + po)[Hps

=3epp + [(1 + po)- 1/(1 + po)1(Ap; + Bpy + Aps + Bpy + Apz + Hps) (5.93)

5.7.7. Reset delay for process P2

Let Tpy ax denote the local time of the Accept output in process P2 at trustworthy BIU k. Hp, denotes
the synchronization-reset delay applied by the BIU nodes resetting with respect to the Accept output in
process P2. Tp, yx denotes the local time at which the next cycle begins for BIU node k synchronizing
with respect to process P2.

Troik = Teoax + Hpo (5.94)
Hp, is the expected delay from the time when the BIU nodes executing process P2 assert their Accept
outputs until the RMU nodes synchronizing with respect to process P3 reset their local-time clocks.
tps.milp2.a denotes the earliest real time at which a trustworthy RMU node synchronizing with respect to
process P3 can reset its local-time clock, measured with respect to the Accept outputs in process P2 at the
trustworthy BIUs.

tps Halp2.a = tpo,an + Tppy + (Bpa + Aps + Hps)/(1 + po) (5.95)
Let tp3 pnlpo.a denote the latest real time at which a trustworthy RMU node synchronizing with respect to

process P3 can reset its local-time clock, measured with respect to the Accept outputs in process P2 at the
trustworthy BIUs.

tp3 Hnlp2,a = tpoan + Ippn + (Bpo + Aps + Hpz)(1 + po) (5.96)

Let hp,; denote the minimum effective delay from the time a trustworthy BIU node in process P2 asserts
its Accept output until a trustworthy RMU node in process P3 resets its local-time clock.

hpoi = tes ilp2,a - tro,an

=r1pp; + (Bpo + Apz + Hp3)/(1 + po) - Tpo A (5.97)

59

Let hp,;, denote the maximum effective delay from the time a trustworthy BIU node in process P2 asserts
its Accept output until a trustworthy RMU node in process P3 resets its local-time clock.

hpy = tps pnlpo,a - tho,a

=Tpy A + Ippp + (Bpa + Aps + Hp3)(1 + po) (5.98)
Hp, is given by:
Hp, = IMP(hp,, , hp 1) (5.99)

The real-time error for Tp, y is bounded as follows. A trustworthy RMU node in process P3 can reset its
local-time clock no earlier than Up, y; nominal ticks from local time Tp, gy at a BIU node synchronizing
with respect to process P2.

Up2,m = (1 + po)Hp; - hpy (5.100)

A trustworthy RMU node in process P3 can reset its local-time clock no later than [p y;, nominal ticks
from local time Tp, yx at a BIU node synchronizing with respect to process P2.

Wp21n = hpon - Hpo/(1 + po) (5.101)
Note that this analysis also applies to the real-time error for Tp, y With respect to the local-time reset of
nodes synchronizing with respect to process P3C.

5.7.8. Relative skew of the local-time reset between processes P2, and P3 or P3C
Let mpy.p3 u denote the bound on the relative skew of the local-time reset between trustworthy BIU

nodes synchronizing with respect to process P2 and trustworthy RMU nodes synchronizing with respect
to process P3.

Tpo-p3,u = Max(Upo m1 » Mp2u,n) (5.102)
Tpy.p3c.y denotes the bound on the relative skew of the local-time reset between trustworthy BIU nodes

synchronized with respect to process P2 and good recovering RMU nodes synchronized with respect to
process P3C. Tp,.p; g also applies here.

Tpo-p3c,H = Tlp2-P3,H (5.103)

5.7.9. Relative skew of the local-time reset for process P2

The bound on the relative skew of the Accept outputs in process P2 at trustworthy BIUs is given by
Tp.a- Tpo.y denotes the bound on the relative skew of the local-time reset for trustworthy BIU nodes
synchronizing with respect to process P2. Then:

Tpo.u = Tpp,a + [(1 + Po) - 1/(1 + po) |Hpo

=2epp + [(1 + po) - 1/(1 + po)I(Ap; + Bpi + Ap, + Hpy) (5.104)

60

5.7.10. Relative skew of the local-time reset for a set including processes P2 and P3C

Let tpscuilpo.a denote the earliest real time at which a good recovering RMU node synchronizing with
respect to process P3C can reset its local-time clock, measured with respect to the Accept outputs in
process P2 at trustworthy BIUs.

tpscmilp2.a = tpo,ag + Ippy + (Bpa + Aps + Hps)/(1 + po) (5.105)
tpscunlp2.a denotes the latest real time at which a good recovering RMU node synchronizing with respect

to process P3C can reset its local-time clock, measured with respect to the Accept outputs in process P2 at
trustworthy BIUs.

tescmnlp2a = teoan + Tepn + (1 + Po)(Bpa + Aps + Hps) (5.106)

tpo.i, denotes the earliest real time at which a trustworthy BIU node synchronizing with respect to process
P2 can reset its local-time clock.

tpo.r1 = tpo,an + Hpo/ (1 + po) (5.107)

tpo.nn denotes the latest real time at which a trustworthy BIU node synchronizing with respect to process
P2 can reset its local-time clock.

tpomn = tp2.an + Hpa(1 + po) (5.108)

Tpa4p3c.y denotes the bound on the relative skew of the local-time reset for a node set including all the
trustworthy or good recovering nodes synchronizing with respect to process P2 or P3C.

Tpoip3cr = Max(l tpacnlpo,a - teo il | thomn - tescmilp2,a |, e 1, Tpsc) (5.109)

5.7.11. Relative skew of the local-time reset for a set including processes P2 and P3

Let Tp,,p3. 1 denote the bound on the relative skew of the local-time reset for a node set including all
trustworthy BIU nodes synchronizing with respect to process P2 or P3. With respect to process P2, the
Accept outputs in process P3 at the trustworthy RMUs and the Accept outputs in process P3C at the good
recovering RMUs can be asserted during the same real time interval. In the presence of asymmetric
faulty BIU nodes, we know that the time interval of the Accept outputs in process P3 at the trustworthy
RMUs is contained within the time interval of the Accept outputs in process P3C at the good recovering
RMUs. Therefore:

Tp2+p3,H < Tp24+P3CH (5.110)

5.7.12. Relative skew of the local-time reset for a set including processes P2 and P4C

Let tpscnilp2.a denote the earliest real time at which a good recovering BIU node synchronizing with
respect to process P4C can reset its local-time clock, measured with respect to the Accept outputs in
process P2 at the trustworthy BIUs.

tpac milp2,a = tpoag + 2rpp; + (Bpo + Aps + Bps + Apy + Hps)/(1 + po) (5.111)

61

tpacunlp2.a denotes the latest real time at which a good recovering BIU node synchronizing with respect to
process PAC can reset its local-time clock, measured with respect to the Accept outputs in process P2 at
the trustworthy BIUs.

tpac mnlp2,a = thoan + 2rppp + (1 + Po)(Bpy + Aps + Bps + Apy + Hpy) (5.112)

Tpa+pac.y denotes the bound on the relative skew of the local-time reset for a node set including all BIU
nodes synchronizing with respect to process P2 or P4C.

Tpopac = MaX(l tpacunlpo,a - teomily | teown - tracrilp2,a |, Tpo 1, Tpac,h) (5.113)

5.7.13. Relative skew of the local-time reset for a set including processes P2 and P4

Let Tp,,psn denote the bound on the relative skew of the local-time reset for a node set including all
trustworthy BIU nodes synchronizing with respect to process P2 or P4. With respect to process P2, the
Accept outputs in process P4 at the trustworthy BIUs and the Accept outputs in process PAC at the good
recovering BIUs can be asserted during the same real time interval. In the presence of asymmetric faulty
RMU nodes, we know that the time interval of the Accept outputs in process P4 at the trustworthy BIUs
is contained within the time interval of the Accept outputs in process P4C at the good recovering BIUs.
Therefore:

Tp2+P4,H < Tlp2+PAC H (5.114)

5.7.14. Relative skew of the local-time reset for a set including processes P3 or P3C

Let Ttps,p3c.q denote the bound on the relative skew of the local-time reset for a node set including all
trustworthy or good recovering RMU nodes synchronizing with respect to process P3 or P3C. With
respect to process P2, the Accept outputs in process P3 at the trustworthy RMUs and the Accept outputs
in process P3C at the good recovering RMUs can be asserted during the same real time interval. This
interval is determined by the time range during which the trustworthy BIU nodes executing process P2
send ECHO. In the presence of asymmetric faulty BIU nodes, the good recovering RMU nodes executing
process P3C may not be able to synchronize any better than the duration of this time range.

Tp3+p3c,H = MAX(Tp3 1, Tp3c,n) = Tp3c,H (5.115)

5.7.15. Relative skew of the local-time reset for a set including processes P3 and P4C
Let tpscnilps.a denote the earliest real time at which a good recovering BIU node synchronizing with

respect to process P4C can reset its local-time clock, measured with respect to the Accept outputs in
process P3 at the trustworthy RMUs.

tpacHilp3.a = tp At + Tep1 + (Bps + Aps + Hpa)/(1 + po) (5.116)
tpac mnlps.a denotes the latest real time at which a good recovering BIU node synchronizing with respect to

process PAC can reset its local-time clock, measured with respect to the Accept outputs in process P3 at
the trustworthy RMUs.

62

tpacnlps.a = tesan + Tepn + (1 + Po)(Bps + Aps + Hps) (5.117)
tps.milps.a denotes the earliest real time at which a trustworthy RMU node synchronizing with respect to

process P3 can reset its local-time clock, measured with respect to the Accept outputs in process P3 at the
trustworthy RMU .

tps ralp3.a = te3.a1 + Hps/(1 + po) (5.118)
tpsmnlps. a4 denotes the latest real time at which a trustworthy RMU node synchronizing with respect to

process P3 can reset its local-time clock, measured with respect to the Accept outputs in process P3 at the
trustworthy RMU .

tp3 ihlp3.a = tp3an + Hps(1 + po) (5.119)

Tpaspsc.y denotes the bound on the relative skew of the local-time reset for a node set including all
trustworthy or good recovering nodes synchronizing with respect to process P3 or P4C.

Tps+pac,y = MAX(| tpac mnlpsa - te3milps,als | tesmnlpsa - tracmilps,aly Tps 1, Tpac,m) (5.120)

5.7.16. Relative skew of the local-time reset for a set including processes P3 and P4

Let 7ps3.p4n denote the bound on the relative skew of the local-time reset for a node set including all
BIU nodes synchronizing with respect to process P3 or P4. With respect to process P3, the Accept
outputs in process P4 at the trustworthy BIUs and the Accept outputs in process PAC at the good
recovering BIUs can be asserted during the same real time interval. In the presence of asymmetric faulty
RMU nodes, we know that the time interval of the Accept outputs in process P4 at the trustworthy BIU
nodes is contained within the time interval of the Accept outputs in process P4C at the good recovering
BIU nodes. Therefore:

Tp3+P4,H < Tlp3+PAC H (5.121)

5.7.17. Relative skew of the local-time reset for a set including processes P3C and P4C

Let tpscmilpo.a denote the earliest real time at which a good recovering RMU node synchronizing with
respect to process P3C can reset its local-time clock, measured with respect to the Accept outputs in
process P2 at the trustworthy BIUs.

tpscmilp2.a = tpo a1 + Tppi + (Bpa + Aps + Hp3)/(1 + po) (5.122)

tpscunlp2.a denotes the latest real time at which a good recovering RMU node synchronizing with respect
to process P3C resets its local-time clock, measured with respect to the Accept outputs in process P2.

tpac.Hhlp2.a = teoan + Tppn + (1 + Po)(Bp2 + Aps + Hps) (5.123)
tpacmilp2.a denotes the earliest real time at which a good BIU node synchronizing with respect to process

P4C can reset its local-time clock, measured with respect to the Accept outputs in process P2 at the
trustworthy BIUs.

63

tpac milp2,a = tpoag + 2rpp; + (Bpa + Aps + Bps + Aps + Hpa)/(1 + o) (5.124)

tpac mnlp2.a denotes the latest real time at which a good recovering BIU node synchronizing with respect to
process P4C can reset its local-time clock, measured with respect to the Accept outputs in process P2 at
the trustworthy BIUs.

tpacmnlpa = toan + 2rppp + (1 + Po)(Bpz + Aps + Bps + Aps + Hps) (5.125)

Tpac+pac.u denotes the bound on the relative skew of the local-time reset for a node set including all good
recovering nodes synchronizing with respect to process P3C or P4C.

Tpscepac,n = Max (| teac mnlpoa - tescilp2,a Ly | teac mnlp2,a - traclp2,a |y Tp3c b, Tpac,n) (5.126)

5.7.18. Relative skew of the local-time reset for a set including processes P4 and P4C

Let Ttpsrpac.q denote the bound on the relative skew of the local-time reset for a node set including all
trustworthy or good recovering BIUs synchronizing with respect to process P4 or P4AC. With respect to
process P3, the Accept outputs in process P4 at the trustworthy BIUs and the Accept outputs in process
P4C at the good recovering BIUs can be asserted during the same real time interval. This time range is
determined by the time range during which the trustworthy RMU nodes executing process P3 send their
ECHO messages. In the presence of asymmetric faulty RMU nodes, the good recovering BIUs executing
process P4C may not able to synchronize any better than the duration of this time range.

Tp4+pac,H = MAX(Tpa 1 , Tpac) = TpacH (5.127)

5.7.19. Relative skew of the local-time reset for a set including all the synchronizing nodes

Let a1 » denote the upper bound on the relative skew of the local-time reset for all the trustworthy or
good recovering nodes executing the synchronization protocol. The following relations allow us to
reduce the number of relative skews that must be considered:

Tpo+p3cu = Tpo.u ANd Tpospscu = Tpsc (5.128)
Tp2+P3C,H = Tp2+P3H (5.129)
Tpo+pac,H = Tpo,i AN Tpopac,h 2 Tpac (5.130)
Tpo+P4C,H = Tp2+PaH (5.131)
Tp3+pac,H = Tp3,p and Tp34pac,H 2 Tpac, (5.132)
Tp3+P4C,H = Tp3+PAH (5.133)
Tpacspac i = Tpsc and Tpscipac.H = Tpac i (5.134)
So:
TALLH = MaX(Tp2,p3c,H> Tp2+P4C,Hs TP3+P4C,H> TIP3C+PAC,H) (5.135)

64

5.8. Relative local-time skews for source-receiver pairs

5.8.1. Duration of the synchronization protocol execution

From global perspective, the execution of the synchronization protocol ends when all the trustworthy
and good recovering nodes have reset their local-time clocks. tene; and teysen denote the earliest and latest
times, respectively, at which a trustworthy BIU node begins to execute the synchronization protocol. T,
denotes the bound on the relative local-time skew for the trustworthy BIU nodes executing process PO.

Tpp = tsync,h - tsync,l (5136)

toyne,p2,m ANd tyne po 1 denote the earliest and latest times, respectively, at which a trustworthy BIU node
synchronizing with respect to process P2 can reset its local-time clock.

tsyne.p2.H1 = Lsyned + 2rppy + (Bpo + Apy + Bpy + Apy + Hpp)/(1 + po) (5.137)
toyne,p2,Hh = toyne,n + 20ppp + (1 + Po)(Bpo + Ap; + Bp; + Apy + Hpy) (5.138)

toyne,p3,h,1 ANd teyne p3 1 p denote the earliest and latest times, respectively, at which a trustworthy RMU node
synchronizing with respect to process P3 can reset its local-time clock.

toyne,p3,H,1 = Lsyncl + 3rppy + (Bpo + Apy + Bpy + Apy + Bpa + Aps + Hps)/(1 + po) (5.139)
toyne,p3.Hh = toyne,n + 3Tppn + (1 + Po)(Bpo + Ap; + Bpy + Apy + Bpy + Aps + Hps) (5.140)

toyne,pap, 1 and toyne pain denote the earliest and latest times, respectively, at which a trustworthy BIU node
synchronizing with respect to process P4 can reset its local-time clock.

toyne,paH,1 = Lsynel + 4Tpp)

+ (Bpo + Api + Bp; + Apy + Bpy + Ap; + Bps + Apy + Hpy)/(1 + po) (5.141)
toyne,paHh = Loynen + 4Tpp1

+ (1 + po)(Bro + Ap1 + Bpi + Apy + Bpy + Aps + Bps + Aps + Hpy) (5.142)

toyne.p3cit and tonepscun denote the earliest and latest times, respectively, at which a good recovering
RMU node synchronizing with respect to process P3C can reset its local-time clock.

Csyne.P3C,H1 = Csync,p3,H.1 (5.143)
tsync,PSC,H,h = tsynC,PS,H,h (5144)

toyne,pac i AN toyne pacn denote the earliest and latest times, respectively, at which a good recovering BIU
node synchronizing with respect to process P4AC can reset its local-time clock.

Csyne.pac,H,1 = Csync,Pa,H.1 (5.145)

65

tsync,P4C,H,h = tsynC,P4,H,h (5146)

Ta L denotes the bound on the relative local-time skew for all the nodes participating in the execution of
the synchronization protocol. The calculation of Ty does not include the nodes executing the
synchronization-capture processes. Oynchnin and Ogynchnax denote lower and upper bounds, respectively, on
the real-time duration of the execution of the synchronization protocol for the trustworthy nodes. synclmin
is measured from the latest time at which a trustworthy node begins to execute the protocol to the earliest
time at which a trustworthy node resets its local-time clock. We choose the following value for dgynclmin:

6synclmjn = '(TCALL - TCPO) + min[(tsync,PZ,H,l - tsync,h)7 (tsync,P3,H,l - tsync,h)7 (tsync,P4,H,l - tsync,h)] (5147)

Osynclmax 18 measured from the earliest time at which a trustworthy node begins to execute the protocol to
the latest time at which a trustworthy node resets its local-time clock. We choose the following value for

Ssynclmax:
6synclmax = (TCALL - TCPO) + max[(tsync,PZ,H,h - tsync,l)a (tsync,P3,H,h - tsync,l)7 (tsync,P4,H,h - tsync,l)] (5148)

We define the following variables in order to simplify these expressions for Ssynclmin and Ssynclmax.

Asyncp2m1 = 2tppy + (Bpo + Apr + Bpy + App +Hp)/(1 + po) (5.149)
Asynep3ng = 3tppy + (Bpo + Apy + Bpy + Apy + Bpy + Aps +Hps3)/(1 + po) (5.150)
Asynepay = 4tppy + (Bpo + Apy + Bpy + Apy + Bpo + Aps + Bps + Apy +Hpy)/(1 + po) (5.151)
Agynep2min = 2tppp + (1 + po)(Bpo + Apy + Bpy + Apy +Hpy) (5.152)
Agynep3n = 3tppp + (1 + po)(Bpo + Apy + Bpy + Apy + Bpy + Aps +Hps) (5.153)
Asynepan = 41ppn + (1 + po)(Bpo + Api + Bpi + Apy + Bpy + Aps + Bps + Apy +Hps) (5.154)
Then:
Osynclmin = ~Tarr, + MIN(Agyne P21 > Asyne. P31 » Asyncpam1) (5.155)
5sync|max = TarL + MaX(Agyne,p2,Hh > Asyne,p3,Hh > Asyne,PaH,h) (5.156)

5.8.2. Bounds on the resynchronization period

Let Osplmin and dsplmax denote the values of Sgynclmin and Sgynchnax, respectively, for the Synchronization
Preservation protocol. Tsp denotes the scheduled local time to begin the execution of the Synchronization
Preservation protocol. pp, denotes a lower bound on the real-time duration of a synchronization cycle.
Pmin 1S measured from the time of the synchronization reset in one cycle to the time of the synchronization
reset in the next.

Prmin = Tsp/(1 + Po) + Osplmin (5.157)

66

Pmax denotes an upper bound for the real-time duration of a synchronization cycle. p.xis measured from
the time of the synchronization reset in one cycle to the time of the synchronization reset in the next.

Pmax = (I+ pO)TSP + 6Sleax (5.158)
P denotes the nominal resynchronization period for the analysis of relative skews. P is measured in units
of local-clock ticks. We want a count of P local-clock ticks to be at least as large as the maximum
duration of a synchronization cycle measured in nominal ticks. This constraint is captured by the
following expression:

P/(1 + po) = Prmax (5.159)
So:

P = (1 + pPo)Pmax (5.160)

We choose P to be the smallest integer that satisfies the previous inequality.

P =1+ Po)Panax | (5.161)

5.8.3. Relative skew between P2-synchronized BIUs and P3- or P3C-synchronized RMUs
Let 7p, p; denote the bound on the relative local-time skew during the synchronization cycle for

trustworthy BIU nodes synchronized with respect to process P2 and trustworthy RMU nodes
synchronized with respect to process P3.

Tpo-p3 = Tppp3r + [(1 + Po) - 1/(1 + po) P (5.162)
Tp2.p3c denotes the bound on the relative local-time skew during the synchronization cycle for trustworthy
BIU nodes synchronized with respect to process P2 and good recovering RMU nodes synchronized with

respect to process P3C. Tp, p; also applies here.

Tpo-p3c = Tp2-p3 (5.163)

5.8.4. Relative skew between P3-synchronized RMUs and P4- or P4C-synchronized BIUs
Let 7p; ps denote the bound on the relative local-time skew during the synchronization cycle for

trustworthy RMU nodes synchronized with respect to process P3 and trustworthy BIU nodes
synchronized with respect to process P4. Then:

Tp3pa = Tpzpam + [(1 + Po) - /(1 + po)IP (5.164)
Tp3.psc denotes the bound on the relative local-time skew during the synchronization cycle for trustworthy
RMU nodes synchronized with respect to process P3 and good recovering BIU nodes synchronized with

respect to process P4C. p;.py also applies here.

Tp3-pac = Tlp3-p4 (5.165)

67

5.8.5. Bound on the relative local-time skew for all the nodes executing the synchronization
protocol

Ttsp.aLL denotes the value of Tap;, for Synchronization Preservation.

TspaLL = TarLn + [(1 + Po) - /(1 + po)]P (5.166)

5.8.6. Generic relative local-time skew between sources and receivers for synchronous
communication

For synchronized operations, we would like to use a single value of the relative local-time skew
between sources and receivers for all point-to-point communication. Tpp sg denotes the common bound on
the relative local-time skew between sources and receivers for synchronized communication. From the
preceding analysis, there are only two particular source-receiver cases that need to be considered to
determine a common skew bound: the skew between P2-synchronized nodes and P3-synchronized nodes
(i.e., Tpo.p3), and the skew between P3-synchronized nodes and P4-synchronized nodes (i.e., Tp3.ps). We
choose Tpp sr to be the largest of the two.

Tlpp,sr = Max(7py-p3, Tp3-p4) (5.167)

5.9. Specifying the Computation Process and Send Process delays

A goal of this ROBUS version is to achieve nearly the same tightness for the relative local-time skew
when executing the Synchronization Preservation, Initial Synchronization, and Synchronization Capture
protocols.

The Synchronization Preservation and Initial Synchronization protocols can be decomposed into two
major phases: agreement generation and agreement propagation. The agreement generation phase
includes the first two stages of the protocol from the Send Process in PO to the Computation Process in
P2. In this phase, the relative skew goes from a bounded initial value denoted by Ttp, to a relative skew of
the Accept outputs denoted by Tp; o, Which is independent of 7py but dependent on the process delays.
The agreement propagation phase includes the last two stages of the protocol from the Send Process in P2
to the Computation Process in P4, including the Computation Processes in P3C and P4C for the
Synchronization Capture protocol. The synchronization-reset delays are applied with respect to the
Accept outputs in processes P2, P3, P3C, P4, and P4C. The process delays for this second phase of the
protocol are important determinants of the final relative local-time skew.

The approach taken to determine the process delays for the synchronization protocols in this version of
the ROBUS is as follows. Since we expect the value of 7py to be different for the Synchronization
Preservation and the Initial Synchronization protocols, we specify the Send Process delay for process PO
(i.e., Bpo) independently for each protocol according to the particular timing requirements of the protocol.
To ensure that all the versions of the protocol achieve approximately the same relative skew, we compute
one set of Computation Process and Send Process delays for the synchronization processes from P1 on.
These delays must be used by all the synchronization protocols.

An additional consideration is the constraint on the minimum data-introduction interval (DII) for the
send port of the Communication Module, Acomm. This constraint applies to the BIUs and the RMUs, and

68

is satisfied by adding functional requirements to the Send Processes at the BIUs and the RMUs. The
details are described next.

5.9.1. Computation Process delays

The Computation Process delay is decomposed into two parts: the reception delay in the Reception
Process and the computation delay in the Accept Process. For the case of the Synchronization
Preservation protocol, the reception delay is the delay allocated to ensure that all valid messages are
received before the computation begins. This delay is similar to the deskewing window applied for the
synchronous point-to-point communication. A fundamental difference between the reception delay for
the synchronization protocols and the deskewing window for the synchronous protocols is that in the
synchronization protocols the relative time spacing between received messages is preserved when
forwarding the messages to the computation, while in the synchronous protocols the messages are
accumulated and forwarded at the same time.

To specify the reception delay, we consider the timing of reception in the Synchronization
Preservation protocol. The timing of reception in the Initial Synchronization protocol is not considered
because in that protocol the uncertainty in the time of reception can be extremely large, especially for
processes P1 and P2, which would result in very large delays for the protocol. Having a quick execution
is very important for the Synchronization Preservation protocol since the duration of the protocol
determines how much time is available to execute the synchronous protocols for a given
resynchronization period.

Let Aispi, Ars.p2, Arsps, and Ajs ps denote the Computation Process delays for processes P1, P2, P3, and
P4 of the Initial Synchronization protocol, respectively. Asppi, Asppz, Aspps, and Agpps denote the
Computation Process delays for processes P1, P2, P3, and P4 of the Synchronization Preservation
protocol, respectively. Ascpsc and Agcpsc denote the Computation Process delays for processes P3C and
P4C of the Synchronization Capture protocol, respectively. All the synchronization protocols have the
same Computation Process delays.

Ap; = Asp1 = Asppi (5.168)
Apy = Aspr = Aspp2 (5.169)
Apz = Assp3 = Asppz = Asppic (5.170)
Aps = Arspsa = Aspps = Asppac (5.171)

For process P1 of the Synchronization Preservation protocol, the expected time range of reception is as
follows (This interval includes all the clock edges at which valid messages can arrive.):

[TSP,PI,RCV,E - APP,RCVIabs—maxa TSP,PI,RCV,E + APP,RCVlabs-max] (5172)

Wsppi denotes the reception delay applied in process P1. For the Synchronization Preservation protocol,
this delay must be large enough to ensure that the Accept Process receives the messages after the clock
edges during which valid messages are expected to arrive.

Wisppi = 2App revlabs-max + 1 (5.173)

69

Wspp2, Wepps, and Wgppy are similarly defined. Let Agpporcvlmaxs Asp.p3Rcvimaxs and Agppgrevimax denote
the maximum valid local time error for the time of reception of synchronization messages in processes
P2, P3, and P4 of the Synchronization Preservation protocol. These variables correspond to Apy rcvlmaxs
Ap3 Revlmax, a0d Apg revilnax €valuated for the case of the Synchronization Preservation protocol. Then:

Wspp2 = 2Asp p2revimax + 1 (5.174)
Wipps = 2Asp p3 revimax + 1 (5.175)
Wspps = 2Asp parevima + 1 (5.176)

Notice that for process P1 the expected time of reception is exactly Asppircvlnax ticks from the left edge
of the reception interval in that process. Similar observations apply to processes P2 through P4. The
computation delay is measured from the time the message to be selected is presented to the Accept
Process until the Accept output is asserted. Csppi, Csppa, Cspps, and Cspps denote the Accept Process
delays for processes P1, P2, P3, and P4, respectively, of the Synchronization Preservation protocol.
These delays also apply to the Initial Synchronization and Synchronization Capture protocols. Then:

Api = Wspp1 + Csppi (5.177)
Apy = Wgppy + Csppo (5.178)
Ap3 = Wspps + Cspps (5.179)
Apy = Wgpps + Csppy (5.180)

5.9.2. Send Process delays

The Send Process delays must be set to ensure proper inter-process communication. The Send Process
delay for process PO does not need to be the same for Initial Synchronization and Synchronization
Preservation. The specification of that value for each protocol is presented below. For all the other Send
Processes, we specify the delays based on two factors. First, we would like to specify the process delays
based on the execution of the Synchronization Preservation protocol. The timing of execution of the
Initial Synchronization protocol is not preferred because in that protocol the uncertainty in the time of
reception can be extremely large, which would result in extremely large process delays for the protocol.
The second factor when specifying the Send Process delays is the need to satisfy the minimum data-
introduction-interval constraint for the send port of the Communication Module, Acomm, Which must be
satisfied at the BIUs and the RMUs.

For the execution of the Synchronization Preservation protocol, the main concern in specifying the
Send Process delays is ensuring proper coordination between the send and receive operations. In
particular, the specification of the send delay must take into consideration the expected reception delay,
the minimum delays in opening the input windows, and the size of the input windows. This is not a
consideration in the Initial Synchronization protocol since in that case all the Computation Processes are
enabled at the beginning of the execution of the protocol.

For the Synchronization Preservation protocol, we must ensure that the time separation between the
sending of INIT and ECHO messages satisfies the Acomm constraint. The preferred method to satisfy this

70

constraint in the Synchronization Preservation protocol is to increase the Send Process delays for the INIT
messages in processes PO and P1 and/or the ECHO messages in processes P2 and P3 until sufficient
separation between them is ensured.

For the Initial Synchronization protocol, the problem is more complicated. Because the initial relative
local-time skew can be much larger than the Computation Process and Send Process delays, there is no
way to meet the Acomm constraint by simply changing the process delays while still achieving the other
design goals. The preferred solution for this case is to add functionality to the Send Processes at the BIUs
and the RMUs to force a minimum separation between INIT and ECHO messages. However, the
buffering of synchronization messages for a bounded but unspecified amount of time at a Send Process is
an undesired solution because it would result in an increase in the bound on the relative local-time skew
achieved by the protocol. Instead, the solution is based on the observation that for the Initial
Synchronization protocol, once the Computation Process of a node has performed the computation that
triggers the sending of an ECHO message (i.e., Accept(INIT) in process P2 at the BIUs, and
Accept(ECHO) in process P3 at the RMUs), there is no need for the node to send an INIT message. To
understand this, notice that the synchronization protocol achieves synchronization in process P2, and this
is then propagated to processes P3 and P4 using ECHO messages. For the Initial Synchronization
protocol, RMUs and BIUs reset their local times with respect to the Accept(ECHO) outputs in processes
P3 and P4, respectively. Therefore, the fact that an ECHO message is going to be sent means that
whatever critical timing information was going to be provided by processes PO and P1, it has already been
received. Therefore, the INIT messages are redundant from that point on. So, for Initial Synchronization,
to meet the minimum data-introduction-interval constraint, the Send Process must have the following
features:

e The sending of an INIT message must be blocked if the message has not been sent by the time the
Accept output that triggers the sending of an ECHO message is asserted.

¢ The send delay for ECHO messages must be greater than or equal to Acomm - 1.

The first functional requirement removes redundant INIT messages. The second requirement ensures
that, if an INIT message is sent at or before the tick at which the Accept output that triggers the sending of
an ECHO message is asserted, then the ECHO message will be sent at least Acomm ticks after the INIT
message.

Let Bispo, Bispi, Bisp2, and Bysps denote the Send Process delays for processes PO, P1, P2, and P3 of
the Initial Synchronization protocol, respectively. Bsppo, Bsppi, Bsp.po, and Bgpp; denote the Computation
Process delay for processes PO, P1, P2, and P3 of the Synchronization Preservation protocol, respectively.
For processes P1, P2, and P3:

Bpi = Bisp1 = Bsppi (5.181)
Bp, = Bisp2 = Bspp2 (5.182)
Bps = Bisps = Bspps (5.183)

Bis.po and Bgp pg are specified separately for Initial Synchronization and Synchronization Preservation.

71

5.9.2.1. Send delay for process PO

5.9.2.1.1. Synchronization Preservation

The Synchronization Preservation protocol is a time-triggered, event-driven protocol. The
communication between processes PO and P1 follows a time-triggered pattern similar to the point-to-point
communication of the synchronous protocols. After that operation, the rest of the Synchronization
Preservation protocol proceeds driven by communication and processing events. Tgp denotes the local-
time trigger for the execution of the Synchronization Preservation protocol. Bgppy denotes the send delay
for process PO of the Synchronization Preservation protocol. Bgppolynin denotes the minimum send delay
for process PO. Bgp polmin 1S assumed to be the time needed to prepare the message for transmission. Bgppg
- Bsppolmin 18 additional delay added to align the send and receive operations. Agpp;rcywnp denotes the
delay from the communication reference time to the opening of the reception window in process P1.
Aspp1 RevWNDImin 18 the minimum value of Aspp; revwnp. Rpp denotes the expected point-to-point reception
delay. Wgpp, is the size of the reception window. Wgpp; e 15 the pre-expectation window (i.e., the size of
the section of the reception window before the expected time of reception). Considering the analysis for
point-to-point communication presented in a previous section, Wgp py pre cOrresponds to Wpegew pre. S0:

WSP,Pl,pre = APP,RCVlabs»malx. (5184)

Tsp.posnp denotes the send time for process PO. Tspposnp corresponds to Tpg in the general analysis of
the clock synchronization protocols. Tsppircv.e denotes the expected time of reception for process P1.
Tsp.pop1 rer denotes the reference time for the transmission between PO and P1.

Tsppo-pi,rer = Tsp (5.185)
Two cases must be considered.

Case 1: Bsp polmin + Rpp = Asp p1 revwnnlmin + Wsppi pre

For this case:

Bsppo = Bsp,polmin (5.186)

Asppi revwap = Bsppolmin + Rpp - Wsppi pre (5.187)
So:

Tsprosnp = Tspropirer + Bsppo = Tsp + Bsp polmin (5.188)
And:

Tsppirceve = Tsprosno + Rep = Tsp + Bsp polmin + Rpp (5.139)

Case 2: Bsp polmin + Rpp < Asp pi Revwanlmin + Wsppi pre
For this case:

72

Bsp.po = Asppi,RcvwiDImin + Wsppi pre - Rpp (5.190)

Asp p1.RcvWND = Asp pi RCVWNDImin (5.191)
So:

Tsp.po,snp = Tsppo-p1rer + Bsppo = Tsp + Aspp1.rcvwNplmin + Wsppipre - Rep (5.192)
And:

Tsppirev.e = Tspposnp + Rpp = Tsp + Agp pi evwnplmin + Wsppipre (5.193)

5.9.2.1.2. Initial Synchronization

Let ms denote the bound on the relative local-time skew considering BIUs and RMUs during the
execution of the Initial Synchronization protocol, measured in nominal clock ticks. Tjs denotes the local
time triggering the execution of the Initial Synchronization protocol. The timing of the first-stage
communication can be analyzed similarly to the point-to-point communication for synchronous protocols.

Tis.po-p1.rer denotes the reference time for the communication between processes PO and P1. Tispo.snp
denotes the local time at which process PO sends the message. Tisposnp corresponds to Ty in the general
analysis of the clock synchronization protocols. Tispircve denotes the expected time of reception in
process P1. Bispy denotes the Send Process delay for process PO. Bigpglnin denotes the minimum send
delay for process PO. Aspircvwnp denotes the delay from the communication reference time to the
opening of the reception window in process P1. Wisp, denotes the size of the reception window in
process P1. Wigp e denotes the pre-expectation window in process P1 (i.e., the size of the section of the
reception window before the expected time of reception). We use Tjs as the reference time for the
communication between processes PO and P1.

Tispo-p1rer = Tis (5.194)

We use the analysis for point-to-point communication to determine Wispi . TO determine Wigp;, we
need the maximum error in the expected time of reception for the Initial Synchronization protocol
messages, Ass pprcvlabs-max-

Ars pp ROV labs-max = L1+ Po)(Tus + max(Upp, » HPP,h))J (5.195)
Wpp,; and Uppy, are given in the Section 4. So, for the reception window:
Wisp1 = 2A1s ppreVabs-max + 1 (5.196)

Wis pi,pre = Ars pp.RCVIabs-max (5.197)
Bis polmin 1 assumed to be the time needed to prepare the message for transmission.

We expect the upper bound on the relative local-time skew during the execution of the first stage of
the Initial Synchronization protocol to be much larger than any minimum timing constraints associated
with the process of communication. Based on this, we assume that the following condition holds for the
communication between processes PO and P1.

73

Bis,polmin + Rpp < Ats p1 revwnnlmin + Wis pipre (5.198)

For this case:

Bis,po = Ais pi. RevwNDImin + Wis pipre - Rpp (5.199)

As p1 RevwiD = Ais pi RCVWNDImin (5.200)
So:

Tis po.sno = Tis po-p1rEF + Bis.po = Tis + Ars p1 RevwNplmin + Wis pipre - Rep (5.201)
And:

Tispireve = Tisposno + Rep = Tis + Ars pi Revwnplmin + Wis,pipre (5.202)

5.9.2.2. Send delay for process P1

Bp, is specified based on timing considerations for Synchronization Preservation. Bpl.;, is determined
by the implementation. Process P1 sends INIT to process P2. However, the reference event used to
coordinate the communication between processes P1 and P2 is the trigger time for the transmission of the
message in process PO. Let Tsppo.porer denote this reference.

Tsppo-p2.rer = Tsp + Bsppo (5.203)

Rsp po.p2 denotes the expected reception delay for process P2 of the Synchronization Preservation protocol.
Rsppo.pr is measured from the send time in process PO to the expected time of reception in process P2.
Aspp2revwnp denotes the delay from the reference time to the opening of the input window in process P2.
Aspp2rcvwnplmin denotes the minimum value, which is determined by the implementation. For proper
communication, the following relation must be satisfied:

Rsp.po-p2 = Asp p2.revwnp + Asp p2 RCVImax (5.204)

Here, both Rgppopr and Agpprrevimax are functions of Bp;, and Agpprrcvwnp can be made larger than
Aspparcvwnplmine Solving this equation for Bp, is not trivial. However, note that Rsppg.p, varies one-to-
one with respect to Bp;, while Agpprrevlmax changes by approximately 2poBp; for each unit step in Bp,.
This observation allows us to use the following algorithm to determine Bp,. The notation Rgppopr(Bpi)
and ASP,PZ,RCVImax(BPl) hlghhghts the dependence Of Rsp’po_pz and ASP,PZ,RCVImax on Bpl'

1. Bpi = Bpilmin

. while [Rgp po-p2(Bp1) < Asp porevimax(Bp1) + Agp.p2 evwNDlmin]
{Bp; =Bp; + 1}

W N

4. Results:

5. Bpl

6. RSP,PO-PZ = RSP,PO-PZ(BPI)

7 ASP,P2,RCV|max = ASl",l"Z,RCVlmax(BPl)

8. AspparcvwND = Rsp po-p2 = Asp p2.revImax

74

5.9.2.3. Send delay for process P2

Bp, is specified based on timing considerations for Synchronization Preservation and the minimum
data-introduction-interval constraint of the Communication Module. Bply, is determined by the
implementation. Tspp;.p; rer denotes the reference time for the communication message propagation from
P1 to P3. The event used to coordinate this communication is the time of the Accept output in process
P1, denoted by Tspp; 4 for the Synchronization Preservation protocol.

Tsppi-p3rer = Tsppia (5.205)

Rsppi-p3 denotes the expected reception delay for process P3 of the Synchronization Preservation protocol.
Rsppips is measured from the time of Accept output in process P1 to the expected time of reception in
process P3. Agppsrcvwnp denotes the delay from the reference time to the opening of the input window in
process P3. Agppsrcvwnplmin denotes the minimum value, which is determined by the implementation.
For proper communication, the following relation must be satisfied:

Rsppi-p3 = Aspp3rcvwap + Asp p3 RCVImax (5.206)

As for the case of Bp, solving this equation for Bp, is non-trivial. Therefore, we use here the same
algorithm used to solve for Bp;. An additional constraint is that Bp, must be greater than or equal to
AComm - 1

1. Bpy = Bpolmin
2. if (Bpy < Acomm - 1), then Bpy = Acomm - 1.

2. while [RSP,PI-PS(BPZ) < ASP,P3,RCV|max(BP2) + ASP,PS,RCVWNDlmin]
3. {BP2:BP2+ 1}

4. Results:

5. sz

6. Rsppips = Rsppip3(Beo)

7. ASP,PS,RCV'max = ASP,P3,RCV|max(BP2)

8. AspparcvwND = Rsppi-ps - Aspp3rcvimax

5.9.2.4. Send delay for process P3

Bp; is specified based on timing considerations for Synchronization Preservation and the minimum
data-introduction-interval constraint of the Communication Module. Bpsly, is determined by the
implementation. Tspp,.psrer denotes the reference time for the communication message propagation from
P2 to P4. The event used to coordinate this communication is the time of the Accept output in process
P1, denoted by Tspp, 4 for the Synchronization Preservation protocol.

Tsppo-parer = Tsppoa (5.207)

Rsppo.ps denotes the expected reception delay for process P4 of the Synchronization Preservation protocol.
Rsppo.ps is measured from the time of Accept in process P2 to the expected time of reception in process
P4. Let Asppsrcvwnp denote the delay from the reference time to the opening of the input window in
process P4. Agppsrcvwnplmin denotes the minimum value, which is determined by the implementation.
For proper communication, the following relation must be satisfied:

75

Rspp2-ps = Asp parcvwap + Asp pa RCVImax (5.208)

As for the case of Bp,, solving this equation for Bp; is non-trivial. Therefore, we use here the same
algorithm used to solve for Bp,. An additional constraint is that Bp; must be greater than or equal to
AComm -1

1. Bps = Bpslmin

2. if (Bps < Acomm - 1), then Bps = Acomm - 1.

2. while [Rgp po-ps(Bp3s) < Agp ps rcvimax(Bps) + Asp parcvwaplmin]
3. {BP3 = Bp3 + 1}

4. Results:

5. Bp

6. RSP,PZ»P4 = RSP,PZ»P4(BP3)

7 ASP,P4,RCV|max = ASl",l"4,RCVlmax(BP3)

8. AgspparcvwND = Rsp pa-pa - Asp parevimax

5.10. Additional considerations

5.10.1. Frame Synchronization

The Frame Synchronization protocol is executed by recovering nodes in the Synchronization
Acquisition mode. The end of the Frame Synchronization protocol triggers the execution of the P3C or
P4C synchronization-capture processes. An assumption for the protocol is the existence of a single valid
clique in Preservation mode. The protocol monitors the ECHO messages from the trusted nodes
identified during Local Diagnosis Acquisition. Achieving frame synchronization is equivalent to finding
the time gap between consecutive executions of the Synchronization Preservation protocol. The Frame
Synchronization protocol consists of searching for a time interval during which the clique is not sending
ECHO messages. Finding such interval indicates that the clique is in between computations of clock
adjustments, and thus it is an appropriate time to start the execution of the Synchronization Capture
protocol. The Frame Synchronization protocol can achieve synchronization even if, for the node
executing the protocol, it is not true that a majority of the eligible sources of the opposite kind is
trustworthy. The time interval measured by the gap timer, called the frame synchronization gap,
corresponds to the maximum observed relative skew between received ECHO messages from trustworthy
nodes. The analysis presented here applies to BIUs and RMU .

Let Agsgap denote the duration of the frame synchronization gap, measured in local clock ticks.
Ags gaplrmu and Ags gaplsiy correspond to Ags gap for RMUSs and BIUs, respectively.

Ags gaplrmu = Isppscrev (5.209)

Ars Gaplgiu = Isppacrev (5.210)

We choose Ags gaplmax to be the largest value of Ags gap.

Ags Gaplmax = max(Isppscrev > Tsppacrev) (5.211)

76

We are interested in the worst-case duration of the Frame Synchronization protocol. Ags denotes the
actual duration of the execution of the Frame Synchronization protocol measured in local clock ticks. To
determine the maximum duration of the Frame Synchronization protocol, we need to consider the
possible patterns of interruption of the interval timer.

N denotes the total number of BIU nodes, and M denotes the total number of RMUs nodes. Let ®
denote the number of eligible sources of the opposite kind.

Olpx = max(N, M) (5.212)

Ags denotes the actual duration of the execution of the Frame Synchronization protocol, measured in
local-clock ticks. An assumption for the Frame Synchronization protocol is that, during its execution, it
will encounter at most one execution of the Synchronization Preservation protocol. Therefore, a source is
allowed to interrupt the interval timer at most once during the execution of the protocol. In the worst-
case, interruptions from eligible sources can consume up to ®ly.*Ars.caplnax local ticks in failed attempts
to find a quiet frame synchronization gap (i.e., an interval with no gap timer interruptions). Adding an
additional Agsgap for the last interval, for which interruptions would not be allowed, then:

AFSlmax = (mlmax + 1)*AFS,GAleax (5213)

Ops denotes the worst-case duration of the Frame Synchronization protocol measured in nominal clock
ticks.

Orslmax = (1 + Po)Ars|ax (5.214)

The assumption that, during its execution, the Frame Synchronization protocol will encounter at most
one execution of the Synchronization Preservation protocol imposes the following constraint on the
minimum duration of the resynchronization period pp.

Prmin = Opslmax (5.215)

5.10.2. Executing Synchronization Preservation after Synchonization Acquisition

Recovering BIUs synchronize to an existing clique by executing the Synchronization Capture protocol
and synchronizing with respect to process P4C. After synchronizing, the recovering BIUs behave
synchronously just like the existing BIU members of the clique. In the first execution of the
Synchronization Preservation protocol, the recovering BIUs synchronize with respect to process P2.
There are two important differences between the existing trustworthy BIU members of a clique and good
recovering BIUs during this execution of the Synchronization Preservation protocol.

The first difference is that good recovering BIUs do not transmit synchronization messages. Even if
they transmitted messages, the existing members of the clique would not include those messages in the
computation of the protocol. Therefore, for the existing trustworthy clique members, the result of the
synchronization protocol does not depend on the performance of recovering BIUs.

The second (and more important) difference is that the good recovering BIUs are not necessarily

synchronized to the existing trustworthy BIU clique members as tightly as the existing trustworthy BIU
clique members are synchronized to each other. This difference is significant in the execution of process

77

P2 and in the definitions of the expected reception delay Rsppo.p, and the worst-case local-time difference
between the actual time of reception and the expect time of reception Agpprrcvlimax- AS presented
previously, the definition of these parameters uses the relative local-time skew of the transmitting BIUs in
process PO (i.e., mpg). Because good recovering BIUs are not included in the definition of 7tpy, their
effective reception delay and its the worst-case error can be different than for the trustworthy BIU clique
members. To correct this problem, the relative local-time skew used to compute Rsp pg.p> and Asp pa rcvlnax
must include the good recovering BIUs.

Tsppolporey denotes the value of Tpy used to compute Rsppopr and Asppr revimax fOr process P2 of the
Synchronization Preservation protocol.

Tsppolp2.rev = Tpaspac + [(1 + po) - L/(1 + po)]P (5.216)

Ttsppo denotes the value of mpy for the Synchronization Preservation protocol. Except for the case above,
Tsp,po is:

Ttsp.po = Topo,u + [(1 + Po) - 1/(1 + po)IP (5.217)

5.10.3. Time service accuracy for the Synchronization Preservation protocol

The PEs receive periodic time updates from the BIUs in the form of INIT messages. These messages
are triggered by the output of the Accept(INIT) functions in process P2 of the Synchronization
Preservation protocol. The accuracy of the time service is defined here as the maximum error in the
expect period between Accept(INIT) outputs in consecutive executions of the Synchronization
Preservation protocol.

Consider two consecutive executions of the Synchronization Preservation protocol, denoted by SP1
and SP2. mp, o denotes the bound on the real-time relative skew of the Accept outputs in process P2 at the
trustworthy BIU nodes. Tp; 4 applies to SP1 and SP2. Let tp 4 lsp1 and tpy 4 nlsp1 denote the bounds on the

earliest and latest real times, respectively, at which the trustworthy BIU nodes synchronizing with respect
to process P2 of SP1 assert the output of their Accept(INIT) functions. Thus:

Tpo,a = tpo anlspi - teo ailspi (5.218)

Let tpy ailsp2 and tpy 4 nlspr denote the bounds on the earliest and latest real times, respectively, at which
the Accept outputs are asserted in process P2 at the trustworthy BIUs for SP2. The relations between
tp2.anlspr and tpy alspr, and tpy anlspa - teo.alspz are constrained by the drift rate of the local-time clocks and
the validity interval for the Accept outputs in process P2 of SP2.

tpo,allsp2 = thoalspr + 2rppy + (Hpy + Tsp + Bpg + Apy + Bpy + Ap)/(1 + po) (5.219)

tpo A nlsp2 = tpo,anlspi + 21ppp + (1 + po)(Hpy + Tsp + Bpg + Apy + Bpi + Apy) (5.220)

Psvclmin and Psycly.x denote the minimum and maximum intervals, respectively, between time updates
for the time-reference service, measured in units of nominal clock ticks.

Psvclmin = tpa,allsp2 - tpo,anlspi

78

= 2rpp1 + (Hpo + Tsp + Bpy + Ap; + Bpi + Ap)/(1 + po) - Tpo s (5.221)
Psvclmax = teo,anlspa - teo alspi
=2rppp + (1 + po)(Hpy + Tsp + Bpy + Apy + Bpy + Apy) + Tpp 4 (5.222)

Psvc denotes the expected period between time updates for the time-reference service, measured in units
of nominal clock ticks.

Psvc = (Psvclmin + Psvelmax)/2 (5.223)
Let a denote the accuracy of Pgyc.
0 = (Psvclmax - Psvclmin)/2
=Tpoa + €pp + (1/2)[(1 + po) - /(1 + po)I(Hpz + Tsp + Bpo + Api + Bpi + Ap2) (5.224)
Substituting for p; A:

o= 3epp + [(1 + po) - 1/(1 + po)I[(3/2)(Api + Bpi + Apy) + (1/2)(Hp, + Tsp + Bpo)] (5.225)

79

6. Clique Preservation mode

This section examines the protocols executed in the Clique Preservation mode. The timing analysis
also applies to the Clique Join mode.

Figure 6.1 illustrates the message exchange pattern between a BIU and its attached PE during the
Clique Join and the Clique Preservation modes. The mode and identification messages are sent to the PE
between the Self-Diagnosis and Schedule Update services. During Schedule Update, the BIU reads the
schedule submitted by its PE and sends to the PE the results determined by the bus for each PE. This is
followed by a single message with the assessment of the new schedule. This consists of a SPECIAL
message with the payload set to VALID_SCHEDULE, ZERO_SCHEDULE (i.e., the schedule is valid
and equal to zero for all the PEs), or INVALID_SCHEDULE. If the schedule is invalid, the ROBUS will
automatically switch to a default schedule. During the PE Broadcast service, a BIU reads the scheduled
messages from its PE and outputs to the PE the result for all the scheduled messages. A broadcast result
equal to PE_ERROR indicates that there was an error at the source PE. If the bus determines that the BIU
of a source PE is not operating properly, then the result of the broadcast will be SOURCE_ERROR or
NO_MAIJORITY. A result of NO_MAJORITY indicates that the RMUs received different messages
from the source BIU. If the assessment of the schedule was ZERO_SCHEDULE, the PE Broadcast
service is not executed and the ROBUS simply waits until it is time to execute the Time Reference
service. During the Time Reference service, a BIU outputs a SPECIAL message with the payload set to
INIT. The sending of this message is triggered by the reference event that the BIU will use to reset its
local-time clock. (For Initial Synchronization and Synchronization Acquisition, the payload is set to
ECHO to explicitly indicate that a different protocol event is used as a reference to reset the local-time
clock.) During the Self-Diagnosis service, the output of a BIU consists of two messages containing the
diagnostic results for the BIUs and the RMUs. These are the last messages of the cycle. The next
messages are the mode and identification messages for the next cycle.

Desired PE Desired
schedule messages schedule

— - —
S e R o,

) Schedule PE Broadcast Time Self- Schedule
B: B Update Reference Diagnosis Update

BIU

VIV
- e T Y) - =

Mode Schedule Synchronization Mode
and Id assessment message and Id
Schedule PE messages BIU and RMU Schedule
processing diagnosis processing
results results

Figure 6.1: Message exchange pattern between a BIU and its attached PE in Clique Preservation mode

A: PE-to-BIU messages, B: Bus services, C: BIU-to-PE messages

81

6.1. Collective Diagnosis Protocol

Figure 6.2 shows the message flow graph for the Collective Diagnosis protocol. For this protocol,
BIUs and RMUs have the same timing characteristics. The analysis presented here does not refer to the
kind of the node sending or receiving messages for any of the protocol processes.

PEs

BIUs

RMUs

Figure 6.2: Message flow graph for the Collective Diagnosis protocol

6.1.1. Stage 1: PO to P1

Tep denotes the local-time trigger for the execution of the Collective Diagnosis protocol, Rpp denotes
the point-to-point expected reception delay, Scppy denotes the Send Process delay for process PO,
Scp.polmin denotes the minimum send delay for process PO, Acppircvwnp denotes the delay from the
communication reference time to the opening of the reception window in process P1; Acp pi rcvwNDlmin 18
the minimum value. Tcpposnp denotes the send time for process PO, and Tcp p rev g denotes the expected
time of reception for process P1.

6.1.1.1. Communication between processes P0 and P1

Let Tcp po-p1 rer denote the reference time for the transmission between PO and P1.

TCD,PO-PI,REF =Tep (6-1)
Case 1: Scp polmin + Rep = Acp pi revwanlmin + Weskew.pre
For this case:

Scp,po = Sep.polmin (6.2)

ACD,PI,RCVWND = SCD,POImin + RPP - wDeskeW,pre (63)
So:

Tep.posno = Tep.po-pr.rer + Scp,po

= Tep + Scp,polmin (6.4)

And :

82

Teppireve = Tepposso + Rep
= Tep + Scp,polmin + Rep (6.5)
Case 2: Scp polmin + Rep < Acp pirevwaplmin + Wbeskew,pre
For this case:
Scp.po = Acp,p1.REVWNDImin + Wheskew.pre - Rpp (6.6)
Acp p1.revwid = Acp p1 RCVWNDImin (6.7)
So:
Tep.posno = Tep.po-pi.rer + Scp,po
=Tcp + Acppi,Revwaplmin + Wpeskew,pre = Rep (6.8)
And:
Teppireve = Tepposso + Rep

= Tep + Acp pi,RevWNDImin + Weskew,pre (6.9)

6.1.1.2. Computation in process P1
Ccppi denotes the computation delay in process P1. The computation delay is measured from the end
of the deskewing window. Ccpp; is assumed to be a constant independent of the computation input or the

system state. Tcppic denotes the local time at which the Computation Process outputs the result for
process P1.

Teppic = Teppireve + Woeskew,post + Cep pi (6.10)

6.1.2. Stage 2: P1 to P2

6.1.2.1. Communication between processes P1 and P2

Let Teppi-po.rer denote the reference time for the transmission between P1 and P2. We choose the end
of the deskewing window in process P1 as the reference time.

TCD,PI-PZ,REF = TCD,PI,RCV,E + WDeskew,posl (61 1)

Scpp1 denotes the Send Process delay for process P1, Acpparevwnp denotes the delay in opening the
reception window in process P2, Tcppy snp denotes the send time for process P1, and Tcp parev e denotes
the expected time of reception for process P2.

We assume that the constraint on the minimum data introduction interval for the Communication

83

Module is satisfied by the minimum delay between the send times for processes PO and P1. That is, we
assume that the following is true:

Rpp + Wpeskew.post + Ceppi + Scp,pilmin = Acomm (6.12)
Case 1: Cceppi + Scppilmin + Rep 2 Acp porevwnplmin + Weskew,pre
For this case:
Sco,pt = Seppilmin (6.13)
Acpp2.revwap = Ceppi + Scp pilmin + Rep - Wpeskew,pre (6.14)
So:
Teppisno = Tepprparer + Ceppi + Scppi
= Tcppirev.E + Weskew,post + Ceppi + Scp,pilmin (6.15)
And:
Tepparevie = Teppisno + Rep
= Tcppirev.E + Weskewpost + Ceppi + Scp,pilmin + Rpp (6.16)
Case 2: Ccppi + Scp pilmin + Rep < Acp p2.revwnplmin + W beskew,pre
For this case:
Scpp1 = Acp.p2.ReVWNDImin + Wpeskewpre = Rpp - Cep pi (6.17)
Acp p2.rRevWND = Ach p2,RCVWNDlmin (6.18)
So:
Teppisno = Tepprparer + Ceppi + Scppi
= Teppirev.E + Weskewpost + Acp p2.RevwNDImin + Wpeskew,pre - Rpp (6.19)
And:
Tepparevie = Teppisno + Rep

= TCD,PI,RCV,E + wDeskew,post + ACD,P2,RCVWND|min + wDeskew,pre (620)

6.1.2.2. Computation in process P2

Ccpp2 denotes the computation delay in process P2. The computation delay is measured from the end
of the deskewing window. Ccpp, is assumed to be a constant independent of the computation input and

84

the system state. Tcppoc denotes the local time at which the Computation Process outputs the result for
process P2.

Teppoc = Teppareve + Woeskewpost + Cepp2 (6.21)

6.1.3. Stage 3: P2 to P3

6.1.3.1. Communication between processes P2 and P3

Let Tep.po-psrer denote the reference time for the transmission between P2 and P3. We choose the end
of the deskewing window in process P2 as the reference time.

Teppap3rer = Teppareve + Wheskew post (6.22)

Scp.p2 denotes the Send Process delay for process P2, Acppsrevwap denotes the delay in opening the
reception window in process P3, Tcppo snp denotes the send time for process P2, and Tcp psrev e denotes
the expected time of reception for process P3.

We assume that the constraint on the minimum data introduction interval for the Communication
Module is satisfied by the minimum delay between the send times for processes P1 and P2. That is, we
assume that the following is true:

Rpp + Wieskew,post + Ceppz + Scp palmin = Acomm (6.23)
Case 1: Ccppr + Scp palmin + Rep 2 Acp p3 Revwnplmin + Weskew,pre
For this case:

SCD,PZ = SCD,P2|mjn (6.24)

Acpp3revwap = Cepp2 + Scp,palmin + Rep - Wpeskew,pre (6.25)
So:

Tepp2sno = Teppa-psrer + Ceppz + Scpp2

= Tcpp2rev.E + Weskewpost + Cepp2 + Scp,p2lmin (6.26)
And:
Teppareve = Teppasno + Rep
= Tcpp2.rev.E + Weskewpost + Cepp2 + Scp,p2lmin + Rpp (6.27)

Case 2: Ccppr + Scp palmin + Rep < Acp p3 Revwnplmin + Wpeskew,pre

For this case:

85

SCD,PZ = ACD,PS,RCVWNDlmin + wDeskew,pre - RPP - CCD,PZ (628)
Acp p3RcvWND = Ach p3 RCVWNDmin (6.29)
So:
Tepp2.snp = Teppa-parer + Ceppr + Scp.p2
= Tepparev.E + Weskewpost + Ach,p3RevwNDlmin + Wpeskew,pre - Rep (6.30)
And:
Tcppsreve = Teppasno + Rep

= TCD,PZ,RCV,E + wDeskew,post + ACD,PS,RCVWNDlmin + wDeskew,pre (631)

6.1.3.2. Computation in process P3
Let Ccpp; denote the computation delay in process P3. The computation delay is measured from the
end of the deskewing window. Ccpp; is assumed to be a constant independent of the computation input

and the system state. Tcpp;c denotes the local-time at which the Computation Process outputs the result
for process P3.

Teppsc = Teppsrev.e + Woeskew.post + Cep.ps (6.32)

6.1.4. Stage 4: P3 to P4

6.1.4.1. Communication between processes P3 and P4

Let Tepps-parer denote the reference time for the transmission between P3 and P4. We choose the end
of the deskewing window in process P3 as the reference time.

TCD,P3—P4,REF = TCD,P3,RCV,E + WDeskeW,posl (633)

Scp.ps denotes the Send Process delay for process P3, Acppsrcvwnp denotes the delay in opening the
reception window in process P4, Tcpps snp denotes the send time for process P3, and Tcp psrev e denotes
the expected time of reception for process P4.

We assume that the constraint on the minimum data introduction interval for the Communication
Module is satisfied by the minimum delay between the send times for processes P2 and P3. That is, we
assume that the following is true:

RPP + wDeskew,posl + CCD,P3 + SCD,PS'min 2 AComm (634)
Case 1: Ccpps + Scp palmin + Rep = Acp parcvwnplmin + Weskew,pre

For this case:

86

Scp,ps = Scp.p3lmin (6.35)
Acpparcvwap = Cepps + Scp palmin + Rep - Weskew,pre (6.36)
So:
Tepps.snp = Tepps-parer + Cepps + Scp.ps
= Tepp2rev.e + Weskewpost + Cepps + Scp palmin (6.37)
And:
Teppareve = Teppasno + Rep
= Tepparev.E + Weskewpost + Cepps + Scp palmin + Rpp (6.38)
Case 2: Ccpps + Scp palmin + Rep < Acp parcvwnplmin + Weskew,pre
For this case:
Scp.p3 = Acp,paReVWNDImin + Wpeskew,pre = Rpp - Cep p (6.39)
Acp parcvwiND = Acp paRCVWNDImin (6.40)
So:
Tepps.snp = Tepps-parer + Cepps + Scp.ps
= Tcpp3rev.E + Weskew.post + Ach pa,RecvwNDdlmin + Wpeskew.pre = Rpp (6.41)
And:
Teppareve = Teppasno + Rep

= Tcpparev.E + Weskew.post + Ach,pa.RcvwNDImin + Weskew,pre (6.42)

6.1.4.2. Computation in process P4
Let Ccpps denote the computation delay in process P4. The computation delay is measured from the
end of the deskewing window. Ccpps is assumed to be a constant independent of the computation input

and the system state. Let Tcppac denote the local time at which the Computation Process outputs the
result for process P4.

Teppac = Tepparev.e + Woeskew,post + Cep.pa (6.43)

6.1.5. Duration of the protocol

Let Acp pacenp denote the delay in process P4 from the end of computation to the end of the Collective

87

Diagnosis protocol. Acp psc.enp 18 assumed to be a constant independent of the system state. Let Tepenp
denote the local-time at which the execution of the Collective Diagnosis protocol ends.

Tep.eno = Teppac + Acp,pa.cEnp (6.44)
Let Acp denote the duration of the execution of the Collective Diagnosis protocol.

Acp = Tepenp - Tep (6.45)

6.2. Schedule Update Protocol

Figure 6.3 shows the message flow graph for the Schedule Update protocol.

w @ @@

o @, B B
o @@

Figure 6.3: Message flow graph for the Schedule Update protocol

6.2.1. Stage 1: PO to P1

Let Tsy denote the local-time trigger for the execution of the Schedule Update protocol. The length of
the message stream is equal to the number of BIUs, denoted by N. Let i denote the index for the
messages in the stream.

0<i<N-1 (6.46)

Let Asy denote the data introduction rate for the stream. Agy must be greater than or equal to the
minimum data introduction interval for the Communication and Computation Modules.

ASU 2 maX(ACOmma AComp) (647)

Let Ssu.po denote the Send Process delay for process PO. Sgypo is assumed to apply to all the messages
in the stream. Let Asypircvwnp denote the delay from the communication reference time to the opening
of the reception window in process P1. Asypircvwnp 1S assumed to apply to all the messages in the
stream.

Tsuposnpi denotes the send time for the i-th message in process PO and Tsypircvii denotes the

expected time of reception for the i-th message in process P1. Tsypo.pirer; denotes the reference time for
the transmission of the i-th message between PO and P1.

Tsupo-pireri = Tsu +1Asu (6.48)

For the version of the RPP covered in this document, the RPP sends mode and node identification

88

messages to the PE triggered by the beginning of the Schedule Update protocol.

The RPP sends the current-mode message to the PE Asysnp.mope ticks after the beginning of the
protocol. Asy snp-mope-reap-pe denotes the delay from the time the mode message is sent to the PE to the
time at which the first schedule message is read from the PE. The RPP is designed to read each PE
message 1 tick before it is to be sent. The absolute minimum value of Sgy py, denoted by Ssy polmin, and the

delay to read the first PE message constrain the actual minimum value of Sgy py to the following effective
minimum value.

Ssu.polmin,efr = MaX(Ssu polmin > Asu,sND-MODE + Asu,SND-MODE-READ-PElmin + 1) (6.49)

6.2.1.1. Communication between processes P0 and P1
Two cases must be considered.
Case 1: Sgy polminefr + Rep 2 Asu pi RevwDlmin + W beskew,pre
For this case:
Ssu,po = Ssu,polmin.efr (6.50)
Asup1.RevWND = Ssu.polminefr + Rep = Wpegkew,pre (6.51)
So:
Tsu.po.snp.i = Tsupo-pi.rER: + Ssu.po
= Tsy + iAsy + Ssu polmin.it (6.52)
And:
Tsupireviei = Tsuposnpi + Rep
= Tsy + iAsy + Ssu polminett + Rpp (6.53)
Case 2: Sgu polmin.etr + Rpp < Agup1 RevwNDlmin + Weskew,pre
For this case:
Ssu.po = Asu.p1.RevWNDImin + Weskew.pre - Rep (6.54)
Asupi,rRevwND = Asu,pi RCVWNDImin (6.55)
So:
Tsu.po.snp.i = Tsupo-pi.rer: + Ssu.po

= Tsy +1Asy + Asupi revwNplmin + Wpeskew.pre = Rpp (6.56)

89

And:
Tsupirevei = Tsuposnni + Rep

= Tsy +1Asy + Asupi revwadlmin + Weskew,pre (6.57)

6.2.1.2. Computation in process P1

Let Cgyp denote the computation delay in process P1. The computation delay is measured from the
end of the deskewing window. Cgyp; is assumed to be a constant independent of the computation input
and the system state. Let Tsypi c; denote the local-time at which the Computation Process outputs the i-th
result for process P1.

Tsupici = TsupirevEi + Wbeskew.post + Csu.pi (6.58)

6.2.2. Stage 2: P1 to P2

6.2.2.1. Communication between processes P1 and P2

Let Tsupi-po.rer; denote the reference time for the i-th transmission between P1 and P2. We choose the
reference times for the transmissions between P1 and P2 to be the same as for the transmissions between
PO and P1.

TSU,PI»PZ,REF,i = TSU,PO-PI,REF,i = TSU + i/\SU (6-59)

Let Asupirersnp denote the delay from the reference time to the send time for the transmissions from
process P1 to process P2. Sgyp; denotes the Send Process delay for process P1 measured from Tsyp; c; to
the corresponding send time, Agy parcvwnp denotes the delay to open the reception window in process P2
measured from the communication reference time to the opening of the input window, Tsyp; snp,i denotes
the send time for the i-th message in process P1, and Tsyporevgi denotes the expected time of reception
for the i-th message in process P2.

Since process P2 starts receiving messages after process P1 does, it is expected that process P2 will
have ample time to open its input windows before the messages start arriving. Therefore, we only need to
consider the case in which process P1 sends the messages as soon as possible.

Asu pi.rersnp 18 measured from the reference times for the transmissions between P1 and P2. As such,
in this case, Asypirersnp includes the delay from the reference time until the time at which the
Computation Process in P1 outputs the results. The actual Send Process delay is only Ssy pilmin-

So:
Asu pi rer-sND = Ssu,po + Rpp + Wiegkew,post + Csupi + Ssu pilmin (6.60)
Ssupi = Ssu,pilmin (6.61)
And:

90

Asu p2.revwad = AsupirevwnD + Woeskew + Csupi + Ssupilmin + Rep - Weskewpre (6.62)
= Asup1,rRevwND + Wieskew,post + Csupi + Ssu,pilmin + Rep (6.63)

In addition:

Tsupisnni = Tsupici + Ssupi
= TsupirevEi ¥ Weskew,post + Csupt + Ssu pilmin (6.64)

And:

Tsup2reviei = Tsupisnpi + Rep

= TsupirevEi ¥ Weskew,post + Csupi + Ssu pilmin + Rep (6.65)

6.2.2.2. Computation in process P2
Let Cgsyp, denote the computation delay in process P2. The computation delay is measured from the
end of the deskewing window. Cgyp, is assumed to be a constant independent of the computation input

and the system state. Let Ty py.c; denote the local-time at which the Computation Process outputs the i-th
result for process P2.

Tsupo.ci = TsuprrevEi + Woeskew.post + Csu.p2 (6.66)

6.2.3. Stage 3: P2 to P3

6.2.3.1. Communication between processes P2 and P3

The communication pattern of the Schedule Update protocol consists of two passes through the
system. Conceptually, we think of the protocol as processing two streams. The first stream is processed
from PO to P2, and the second stream is processed from P2 to P4.

Let Asustreampo-p2lmn denote the desired minimum separation between the two streams. This
separation constraint is measured from the last message of the first stream to the first message of the
second stream, and it is assumed to apply at the inputs and outputs of the BIUs and the RMUs.
Asu strEam.po-p2lBiu and Asy stream.po-p2lrmu denote the actual separation between the streams at the BIUs in
process P2 and at the RMUs in process P3, respectively.

Asu sTREAM.PO-P2lmin Must be greater than or equal to the stream’s data introduction interval.

Asu sTREAM,PO-P2Imin = Asu (6.67)

At P3, we want the expected reception intervals for the first and the second stream to be separated by
at least one tick. This is captured by the following constraint.

Asu sTREAM,PO-P2Imin = Wpeskew + 1 (6.68)

91

The effective allowed minimum separation between the streams is:
Asu sTREAM,PO-P2lmin,cff = MAX(Asu sTREAM,P0-P2lmin » Asu > Wpeskew + 1) (6.69)
Let Tsup2psreri denote the reference time for the i-th transmission between P2 and P3. We choose

these reference times to be the equal to the times at which the Computation Process of P2 outputs the
corresponding results.

Tsupo-pareri = Tsupaci (6.70)
Ssup, denotes the Send Process delay for process P2, Tsyprsnp,; denotes the send time for the i-th

message in process P2, and Tsypsrevi; denotes the expected time of reception for the i-th message in
process P3.

Tsup2.snpi must be chosen to ensure that the constraint on the minimum stream separation is satisfied.
Two cases must be considered.

Case 1: Tsypo.co + Ssup2lmin < TsuposnpN-1 + Asu STREAM,PO-P2lmin.eff

For this case, the results of the computation in P2 must be buffered until they can be sent with the
proper separation from the first stream. So:

Asu sTREAM.PO-P2IBIU = AsU STREAM.PO-P2Imin.eft (6.71)
Let Asy.p2.sur denote the buffering delay for the stream at P2.
Asup2,ur = (TsuposnoN-1 + AsustrEAMPO-P2Imineft) = (Tsup2.co + Ssup2lmin) (6.72)
The send delay for process P2 is:
Ssup2 = Ssupalmin + Asup2BUF (6.73)
So:
Tsupasnpi = Tsupaci + Ssupz
= Tsup2reviEi ¥ Weskewpost + Csupz + Ssup2 (6.74)
And:
Tsupsreviei = Tsupasnpi + Rep
= Tsup2reviEi ¥ Weskewpost + Csupz + Ssup2 + Rpp (6.75)
Case 2: Tsyp2.c0 + Ssup2lmin 2 Tsu.po.sND.N-1 + AsuSTREAM.PO-P2min et

For this case, the results of the computation can be sent as soon as possible. The send delay is the
minimum value.

92

Ssu.p2 = Ssu,p2lmin (6.76)
So:
Tsupo.snpi = Tsupaci + Ssupz
= TsupareviEi ¥ Weskewpost + Csupz + Ssu palmin (6.77)
And:
Tsupsreviei = Tsupasnpi + Rep
= Tsup2.reviEi ¥ Weskewpost + Csupz + Ssu palmin + Rep (6.78)

Therefore, the actual separation between the streams at the BIUs is:

Asu,stream.po-p2lBru = Tsup2.s80,0 - Tsu.po,sNDN-1 (6.79)
= Tsup2,snp.0 - [Tsuposnpo + (N-1)Agy] (6.80)
= 2Rpp + 2ZWpegkew,post + (Csupi + Csup2) + (Ssupi + Ssupz) - (N-1)Agy (6.81)

6.2.3.2. Computation in process P3

Let Cgyps denote the computation delay in process P3. The computation delay is measured from the
end of the deskewing window. Cgyp; is assumed to be a constant independent of the computation input
and the system state. Let Tgy psc; denote the local-time at which the Computation Process outputs the i-th
result for process P3.

Tsupsci = Tsupsreviei + Woeskew,post + Csu,ps (6.82)

6.2.4. Stage 4: P3 to P4

6.2.4.1. Communication between processes P3 and P4

Asu STREAM.PO-P2|min.efr alSO applies to the communication between P3 and P4. Let Sgyps; denote the Send
Process delay for process P3. Sgyps is measured from the time the Computation Process outputs a
message until the time the message is sent. Let Tsypspsrer; denote the reference time for the i-th
transmission between P3 and P4. We choose these reference times to be the equal to the times at which
the Computation Process outputs the corresponding results.

TSU,PS»P4,REF,1 = TSU,PS,C,i (6-83)

Tsupssnpi denotes the send time for the i-th message in process P3, and Tsypsrcvii denotes the
expected time of reception for the i-th message in process P3. Tgsypssnpi must be chosen to ensure that
the constraint on the minimum stream separation is satisfied. Two cases must be considered.

93

Case 1: Tsypsco + Ssupslmin < Tsupisnon-1 + Asu sTREAM,PO-P2Imin. et

For this case, the results of the computation in P3 must be buffered until they can be sent with the
proper separation from the first stream. So:

Asu sTREAM.PO-P2IRMU = AsU.STREAM,PO-P2Imin.eff (6.84)
Let Asy.p3 pur denote the buffering delay for the stream at P3.
Asup3ur = (Tsuprsnpn-1 + AsustREaM.Po-P2lmin.ef) = (Tsups.co + Ssu.pshmin) (6.85)
The send delay for process P3 is:
Ssu.p3 = Ssu.palmin + Asu.p3.BUF (6.86)
So:
Tsups.snpi = Tsupsci+ Ssups
= Tsupsreviei ¥ Weskewpost + Csups + Ssups (6.87)
And:
Tsuparcvii = Tsupssnpi + Rep
= TsupsreviEi ¥ Weskewpost + Csups + Ssups + Rpp (6.88)
Case 2: Tsyps.co + Ssupslmin = Tsupi.snoN-1 + AsusTREAM.P0-P2lmin.eff

For this case, the results of the computation can be sent as soon as possible. The send delay is the
minimum value.

Ssu.ps = Ssu,p3lmin (6.89)
So:
Tsupssnoi = Tsupsci + Ssu.ps
= Tsupsreviei ¥ Weskewpost + Csups + Ssu pslmin (6.90)
And:
Tsuparcviei = Tsupssnp,i + Rep
= Tsupsreviei ¥ Weskewpost + Csups + Ssu,pslmin + Rep (6.91)
Therefore:

ASU,STREAM,PO»PZ'RMU = TSU,PS,SND,O - TSU,PI,SND,N-I (692)

94

= Tsupssnno - [Tsupisnoo + (N-1)Agul (6.93)

= 2Rpp + 2ZWpeskew,post + (Csupz + Csups) + (Ssupz + Ssups) - (N-1)Agy (6.94)

6.2.4.2. Computation in process P4

Let Cgyps denote the computation delay in process P4. The computation delay is measured from the
end of the deskewing window. Cgyps is assumed to be a constant independent of the computation input
and the system state. Let Tgypsc; denote the local-time at which the Computation Process outputs the i-th
result for process P4.

Tsupaci=Tsupsrcv.ei + Wpeskew,post + Csu.pa (6.95)

6.2.5. Duration of the protocol

Let Asy ps.c.enp denote the delay in process P4 from the end of the computation for the last message to
the end of the Schedule Update protocol. Asypscenp 1S assumed to be a constant independent of the
system state. Let Tsyenp denote the local-time at which the execution of the Schedule Update protocol
ends.

Tsuenp = Tsupscn-1 + AsupacEnp (6.96)
Let Asy denote the duration of the Schedule Update protocol execution.

Asy = Tsuenp - Tsu (6.97)

6.3. PE Communication and Accusation Exchange Protocols

Figures 6.4 and 6.5 show the message flow graphs for the PE Broadcast and Accusation Exchange
protocols, respectively. For this RPP, these protocols are implemented as a single protocol composed of
two phases. In the first phase, the scheduled PE messages are processed as a stream. In the second phase,
the protocol adds a message containing accusations against nodes of the opposite kind. The processing of
the scheduled PE messages is examined next. The analysis of the accusations messages is presented after
that.

Source

PEs PE only

Source
BIUs BIU only
RMUs

Figure 6.4: Message flow graph for the PE Broadcast protocol

95

w @, B
RMUs @

Figure 6.5: Message flow graph for the Accusation Exchange protocol

6.3.1. Scheduled PE messages in stage 1: P0 to P1

Let Tpg denote the local-time trigger for the transition to PE Communication mode. KpEyschedl denotes
the number of scheduled PE messages. Let Apgsched denote the data introduction interval for the stream of
scheduled PE messages. Apgscneq must satisfy the constraints on the minimum data introduction intervals
for the Communication and Computation modules.

APE,sched 2 maX(AComma AComp) (698)
Let i denote the index for the stream of scheduled PE messages.
0 <1< Kpgsched - | (6.99)

Let Speposchea denote the Send Process delay for scheduled PE messages in process PO. We assume
that Spg posched 1S @ constant independent of process input. Let Apgpj revwnp.schea denote the delay from the
communication reference time to the opening of the reception window for scheduled PE messages in
process P1. We assume that Apgp; revwND.sched 18 @ constant. Tpg posnpschea; denotes the send time for the
i-th scheduled PE message in process PO, and Tpgp rev Eschedi denotes the expected time of reception for
the i-th scheduled PE message in process P1. Let Tpgpopirersched; denote the reference time for the
transmission of the i-th scheduled PE message between PO and P1.

Tpe po-p1 REF.schedi = TPE + 1APE sched (6.100)

For the version of the RPP covered in this document, the RPP sends the schedule-assessment message
to the PE triggered by the beginning of the PE Communication minor mode. The RPP sends the message
to the PE Apgsnp.sa ticks after the beginning of the protocol at time Tpg. Apgsnp-sareap-pe denotes the
delay from the time the schedule assessment message is sent to the PE to the time at which the first PE
message is read from a PE. The RPP is designed to read each PE message 1 tick before it is to be sent.
The absolute minimum value of Spgpgscheds denoted by Spgposchedlmin, @and the delay to read the first PE
message constrain the actual minimum value of Spg po sched to the following effective minimum value.

SpE po,schedlmin et = MAX(SpE po schedlmin » ApE,sND-sA + ApE SND-SA-READ-PEImin + 1) (6.101)

6.3.1.1. Communication between processes P0 and P1

Two cases must be considered.

Case 1: SPE,PO,schedlmin,eff + RPP 2 APE,PI,RCVWND,schedlmin + wDeskew,pre

! KpE sched 18 denoted simply as K when used as a subscript.

96

For this case:

SPE,PO,sched = SPE,PO,schedlmin,eff

APE,PI,RCVWND,sched = SPE,PO,schedImin,eff + RPP - wDeskeW,pre
So:

TPE,PO,SND,sched,i = TPE,PO»PI,REF,sched,i + SPE,PO,schedlmin,eff

= Tpg + 1ApEsched + SpE.Po.schedlmin.eff

And:

TPE,PI,RCV,E,sched,i = TPE,PO,SND,sched,i + RPP

= Tpg + 1Apg sched + SPE,P0,schedlminefr + Rpp

Case 2: SPE,PO,schedlmin,eff + RPP < APE,PI,RCVWND,schedlmin + WDeskeW,pre
For this case:

SPE,PO,sched = APE,PI,RCVWNDlmjn + wDeskew,pre - RPP

APE,PI,RCVWND,SChed = APE,Pl,RCVWND,schedlmin
So:

TPE,PO,SND,sched,i = TPE,PO»PI,REF,sched,i + SPE,PO,sched

= Tpg + 1Apg sched + ApE.p1.RCVWND schedlmin + W Deskew.pre = Rpp

And:

TPE,PI,RCV,E,sched,i = TPE,PO,SND,sched,i + RPP

= TPE + IAPE,SCth + APE,PI,RCVWND,schedlmin + WDeskeW,pre

6.3.1.2. Computation in process P1

Let Cpgpischea denote the computation delay for scheduled PE messages

(6.102)

(6.103)

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

in process P1 . The

computation delay is measured from the end of the deskewing window for each message. Cpgpisched 1S
assumed to be a constant independent of the computation input and the system state. Let Tpgpicsched.i
denote the local-time at which the Computation Process outputs the i-th result for process P1.

TPE,PI,C,sched,i = TSU,Pl,RCV,E,sched,i + WDeskeW,post + CPE,Pl,sched

97

(6.110)

6.3.2. Scheduled PE messages in stage 2: P1 to P2

6.3.2.1. Communication between processes P1 and P2

Let Tsupi-p2.rEFsched.; denote the reference time for the i-th transmission between processes P1 and P2.
We choose the reference times for the transmissions between P1 and P2 to be the same as for the
transmissions between PO and P1.

TPEp1-P2REFschedi = L PEPO-P1REF.schedi = LPE + 1APE sched (6.111)

Apg p1.REF-SND sched d€noOtes the delay from the reference time to the send time for the transmissions of
scheduled PE messages from process P1 to process P2, Spgp;scnea denotes the Send Process delay for
process P1 measured from Tsyp c; to the corresponding send time, Apg pa RevwND sched d€NOtes the delay in
the opening of the reception window in process P2 measured from the communication reference time to
the opening of the input window, Tpg p snp.sched.i denotes the send time for the i-th message in process P1,
and TpgprrevEsched denotes the expected time of reception for the i-th message in process P2. Since
process P2 starts receiving messages after process P1 does, it is expected that process P2 will have ample
time to open its input windows before the messages start arriving. Therefore, we only consider the case in
which process P1 sends the messages as soon as possible.

Apg p1 REF-SND.sched 18 Measured from the reference times for the transmissions between P1 and P2 of
scheduled PE messages. As such, in this case, Apgp; RrersnDsched iNCludes the delay from the reference
time to the time at which the Computation Process in P1 outputs the results. The actual Send Process
delay is Only SPE,Pl,schedlmjn‘ So:

ApE p1 REF-SND,sched = SPE,P0,sched + Rpp + Wpeskew,post + CpEP1sched + SpPEP1 schedlmin (6.112)
And:

SpEP1,sched = SPE,P1 schedmin (6.113)
Also:

ApE P2 RCVWND sched = ApEp1IRCVWND,sched + Wheskew + CpEpi,sched + SpEP1schedlmin + Rpp - Wpegkewpre (6.114)

= Apg,p1 RCVWND,sched T Weskew,post CPEP1,sched + SPEP1 schedlmin + Rpp (6.115)

And:
TpEp1,sND schedi = TPEP1C schedi + SPE.P1 schedlmin (6.116)
= T p1. RV Eschedi T+ WDeskew,post T CPEP1,sched + SPE,P1 schedlmin (6.117)

p

And:
TpE P2 RCV Eschedi = TPEPI,SND.sched.i + Rpp (6.118)
= TsupiReV Eschedi + WDeskew,post + Cpepi,sched + SpEP1schedlmin + Rpp (6.119)

98

6.3.2.2. Computation in process P2

Let Cpgpasched denote the computation delay in process P2. The computation delay is measured from
the end of the deskewing window for each message. Cpg py.sched 1S assumed to be a constant independent of
the computation input and the system state. Let Tpgprcscheai denote the local-time at which the
Computation Process outputs the i-th result for process P2.

TPE,PZ,C,sched,i = TPE,PZ,RCV,E,sched,i + WDeskew,post + CPE,PZ,sched (6120)

6.3.3. Accusations message in stage 1: PO to P1

The timing of the accusations message can be analyzed as if it were part of a separate stream being
processed after the stream of PE messages. The analysis presented here follows the analysis used for the
Schedule Update protocol.

6.3.3.1. Communication between processes P0 and P1

Let Apg sched-acclmin denote the desired minimum separation between the stream of PE messages and the
accusations message. This separation constraint is measured from the last message of the PE message
stream to the accusations message, and it is assumed to apply at the inputs and outputs of the BIUs and
the RMUs. We assume that Apg sched-acclmin 18 greater than or equal to the data introduction interval of the
PE message stream.

APE,sched»acclmin 2 APE,sched (6 12 1)

Let Tpg po.acc denote the time at which the accusations are available for transmission in process PO. It is
assumed that Tpg po ... OCcurs after the reference time for transmission of the last PE message.

TPE,PO,aCC > TPE + (KPE,sched - 1)/\PE,sched (6122)

Let Apgpoacc_ready denote the delay from the reference time for transmission of the last PE message to
the time at which the accusations are available for transmission in process PO.

APE,PO,accfready = TPE,PO,acc - [TPE + (KPE,sched - 1)APE,sched] (6123)

Spepoacc denotes the Send Process delay for the accusations message in process PO, Tpgposnp.ace
denotes the send time for the accusations message in process PO, Tpg pi rev Eacc denotes the expected time
of reception for the accusations message in process P1, Tpgposnpsched k.1 denotes the send time for the last
scheduled PE message. Tpg posnp.acc Must be chosen to ensure that the constraint on the minimum stream
separation is satisfied. Two cases must be considered.

Case 1: TPE,PO,acc + SPE,PO,acclmin < TPE,PO,SND,sched,K-l + APE,sched-aCClmin

For this case, the accusations message must be buffered until it can be sent with the proper separation
from the PE message stream. Let Apg popur.acc denote the buffering delay for the accusations at PO.

APE,PO,BUF,:M:(: = (TPE,PO,SND,sched,K-l + APE,sched-acclmin) - (TPE,PO,acc + SPE,PO,acclmin) (6124)

99

The send delay for the accusations message in process PO is:

SpE po.ace = SpE,Po,acclmin + APE,po.BUF.ace (6.125)
So:

TpEpo.snD.ace = TPEPo.ace + SPEP0.ace (6.126)
And:

TPE,PI,RCV,E,acc = TPE,PO,SND,acc + RPP
= TpEpo.acc + SpEpo.acc + Rpp (6.127)
Case 2: TPE,PO,acc + SPE,PO,acclmin 2 TPE,PO,SND,sched,K»l + APE,sched-aCClmin

For this case, the accusations message can be sent as soon as possible. The send delay is the minimum
value.

SpEpo,acc = SPE,P0.acclmin (6.128)
So:
TrE.po.sND.ace = TrEPo.ace + SpEPo.ace
= TrEpo.acc + SPE.P0.acclmin (6.129)
And:

TPE,PI,RCV,E,acc = TPE,PO,SND,acc + RPP

= TPE,PO,acc + SPE,PO,acclmin + RPP (6130)

6.3.3.2. Computation in process P1

Let Cpgpiacc denote the computation delay in process P1 for the accusations message. The
computation delay is measured from the end of the deskewing window. Let Tpgp;cacc denote the local-
time at which the computation process outputs the result.

TPE,PI,C,aCC = TPE,PI,RCV,E,acc + wDeskew,post + CPE,Pl,acc (6131)

6.3.4. Accusations message in stage 2: P1 to P2

Process P1 generates a set of accusations that are not necessarily related to the accusations received
from PO. The processing of these accusations is analyzed independently. However, it is assumed that the
constraint on the minimum separation between the stream of PE messages and the accusations message
also applies here.

100

6.3.4.1. Communication between processes P1 and P2

Let Tpgpiacc denote the time at which the accusations are available for transmission in process P1.
Trepi.csched k-1 denotes the local time at which the Computation Process outputs the result for the last
scheduled PE message. It is assumed that Tpgp; . Occurs after the time at which the Computation
Process outputs the result for the last PE message.

Trepiace > TrEPICsched k-1 (6.132)

Let Apgpi acc_ready denote the delay from the time at which the Computation Process outputs the result
for the last PE message to the time at which the accusations are available for transmission in process P1.

ApE p1 ace_ready = TPEP1ace = TPEPIC sched K-1 (6.133)

Spepiacc denotes the Send Process delay for the accusations message in process P1l, Tpgpisnp.ace
denotes the send time for the accusations message in process P1, Tpgprrev Eace denotes the expected time
of reception for the accusations message in process P2, and Tpgp; snp.schea. k-1 denotes the sent time for the
last scheduled PE message. Tpgpisnpacc Must be chosen to ensure that the constraint on the minimum
stream separation is satisfied. Two cases must be considered.

Case 1: TPE,Pl,acc + SPE,Pl,acclmin < TPE,PI,SND,sched,K-l + APE,sched-aCClmin

For this case, the accusations message must be buffered until it can be sent with the proper separation
from the PE message stream. Let Apgp; puracc denote the buffering delay for the accusations at P1.

APE,PI,BUF,acc = (TPE,PI,SND,sched,K—l + APE,sched—achmin) - (TPE,Pl,acc + SPE,Pl,acclmin) (6134)

The send delay for accusations in process P1 is:

SpEP1.acc = SPEP1acclmin + APEPI BUF.ace (6.135)
So:

Trep1 snDace = TPEPLace + SPEPLace (6.136)
And:

Tpep2RCVEace = TPEPISND,acc + Rpp
= Tpepiace + SpEp1acc + Rep (6.137)
Case 2: Tpgpiacc + SpEp1acchmin = TrEp1.SND sched k-1 + APE sched-acclmin

For this case, the accusations message can be sent as soon as possible. The send delay is the minimum
value.

SPE,Pl,aCC = SPE,Pl,acclmin (6138)

So:

101

TPE,PI,SND,acc = TPE,Pl,acc + SPE,Pl,aCC
= TPE,Pl,aCC + SPE,Pl,acclmin (6139)
And:

TPE,PZ,RCV,E,acc = TPE,PI,SND,aCC + RPP

= TpEpi,acc + SPEP1acchmin + Rpp (6.140)

6.3.4.2. Computation in process P2
Let Cpgpo..cc denote the computation delay in process P2 for the accusations message. The computation

delay is measured from the end of the deskewing window. Let Tpgpy c.acc denote the local-time at which
the Computation Process outputs the result.

TPE,PZ,C,aCC = TPE,PZ,RCV,E,acc + wDeskew,post + CPE,PZ,acc (6141)

6.3.5. Duration of the protocol

Let Apgps.ace.c.enp denote the delay in process P2 from the end of the computation to the end of the PE
Communication mode protocols. Apgps.cc.c.enp 1S assumed to be a constant independent of the system
state.

Let Tpgenp denote the local-time at which the execution of the PE Communication protocols ends.

TPE,END = TPE,PZ,C,aCC + APE,PZ,aCC,C»END (6142)

Let Apg denote the duration of the PE Communication protocol.

Ape = Tpeenp - Tre (6.143)

6.3.6. Bound on the number of PE messages

The execution of the PE Communication protocol must end at or before the time at which the
execution of the Synchronization Preservation protocol is scheduled to begin. Let Tgsp denote the local-
time trigger for the execution of the Synchronization Preservation protocol. If no additional time is
needed from the end of the PE Communication to the beginning of the Synchronization Preservation
protocol, the following relation expresses the constraint on the duration of the PE Communication
protocol.

TPE,ENDImaX =Tsp (6.144)
So:

Apg lmax = Tsp- Tpg (6.145)

102

To compute the maximum number of PE messages that can be processed, we need to determine the
time consumed in processing the accusation messages. Kpg schedlmax denotes the maximum number of
scheduled PE messages that can be processed, and Apg,.. denotes the time delay from the reference time
for the transmission of the last scheduled PE message from PO to P1 to the end of the protocol.

APE,acc = TPE,END - [TPE + (KPE,sched - 1)/\PE,sched]
= SPE,PO,sched + RPP + wDeskew,posl + CSU,Pl,sched
+ ApEp1ace_ready + SPEP1Lace T Rpp + Weskew,post + CpEp2,ace + APE,P2,acc. C-END
= (SpEpo,sched + SpEP1ace) + 2(Rpp + Wpegkew.post)
+ (CSU,Pl,sched + CPE,PZ,aCC) + (APE,Pl,aCC_ready + APE,PZ,aCC,C»END) (6146)
So:

KPE,schedlmax = I—(TSP - TPE - APE,acc)//\PE,schedJ +1 (6147)

6.3.7. PE message latency
Let Apg aency denote the latency for PE messages. For this analysis, we define the PE message latency
as the time from the reference time for the transmission of the i-th scheduled PE message by process PO

until the completion of the corresponding computation in process P2. So:

ApE latency = TPE P2, sched,i = T PE,PO-P1,REF,sched,i (6.148)

= (SpEpo,sched T SpEP1,schedlmin) + 2(Rpp + Wpeskew,post) + (Cpep1,sched + CpE p2,sched) (6.149)

6.4. Synchronization Preservation Protocol

Section 5 of this document examines the timing aspects of the Synchronization Preservation protocol.

6.5. Miscellaneous considerations

6.5.1. Time gap between Sync Reset and Collective Diagnosis

Acp pegin denotes the time from the synchronization reset to the beginning of the Collective Diagnosis
protocol, measured in local clock ticks.

Acp begin = Tep (6.150)

If needed, Acppegin Can be chosen to ensure that the delay from the send time of the ECHO message in
Initial Synchronization or Synchronization Preservation to the send time of the first message in Collective
Diagnosis satisfies the minimum data introduction interval for the Communication Module. At the
RMUs, which are the last to send ECHO messages, this constraint corresponds to:

103

Tep.po, snp - (Tesa + Bps) 2 Acomm (6.151)
Or:

Hps - Bps + Tep + Scp,po 2 Acomm (6.152)

6.5.2. Time gap between Collective Diagnosis and Schedule Update

Asu pegin denotes the time from the end of the Collective Diagnosis protocol to the beginning of the
Schedule Update protocol, measured in local clock ticks.

Asu pegin = Tsu - Tep - Acp (6.153)

If needed, Asupesin can be chosen to ensure that the delay from the send time of the last Collective
Diagnosis message to the send time of the first Schedule Update message satisfies the minimum data
introduction interval for the Communication Module. At the BIUs, this constraint corresponds to:

Tsupo,snp,0 - Tepps.svp 2 Acomm (6.154)

At the RMUs, the constraint is:

Tsupi.snp,0 - Teppssnp 2 Acomm (6.155)

6.5.3. Time gap between Schedule Update and PE Communication

ApE pegin denotes the actual time delay from the end of the Schedule Update protocol to the beginning of
the PE Communication protocol, measured in local clock ticks.

ApE begin = Tpg - Tsu - Asuy (6.156)

If needed, Apgpegin can be chosen to ensure that the delay from the send time of the last Schedule
Update message to the send time of the first PE Communication message satisfies the minimum data
introduction interval for the Communication Module. At the BIUs, this constraint corresponds to:

Treposnpo - TsupzsnoN-1 2 Acomm (6.157)

At the RMUs, this constraint is:

Trep1.snpo - Tsupssnon-1 2 Acomm (6.158)

6.5.4. Time gap between PE Communication and Synchronization Preservation

Asp begin denotes the actual time delay from the end of the PE Communication protocol to the beginning
of the Synchronization Preservation protocol, measured in local clock ticks.

Asp pegin = Tsp - Tpe - Apg (6.159)

104

If needed, Agppegin can be chosen to ensure that the delay from the send time of the last PE
Communication message to the send time of the first Synchronization Preservation message satisfies the
minimum data introduction interval for the Communication Module. At the BIUs, this constraint
corresponds to:

(Tsp + Bsppo) - Trep2.snoN-1 2 Acomm (6.160)

At the RMUs, this constraint is:

(TPE,PI,RCV,E - APP,RCVlabs—maX + APl + BPI) - TPE,P3,SND,N—1 2 AComm (6161)

105

7. Self-Test mode

This section examines the timing aspects of the Self-Test mode. The main objective is to determine a
bound on the relative time skew at the end of this mode.

7.1. Bound on the relative time skew at the beginning of the Self-Test mode

An RPP enters the Self-Test mode for startup after receiving a power-on enable, or for restart after the
detection of a local failure or a failure of the clique.
7.1.1. Power-one enable

It is assumed that the nodes enter the Self-Test mode immediately after power-on enable. Opor denotes
the actual duration of the time interval within which the nodes are enabled measured in units of seconds.
Spoklmax denotes the upper bound for Spop. Tpor denotes the upper bound on the relative time skew at

power-on enable, measured in nominal clock ticks. T, denotes the nominal duration of a clock tick
measured in seconds. dpog and Tpog are related as follows:

TpoE = OpoElmax/To (7.1)

7.1.2. Local failure or bus failure

Orcp denotes the actual duration of a fault-causing phenomenon measured in units of seconds. We
assume that the duration of the fault-causing phenomenon as experienced by individual nodes can be
effectively 0. (Ogcp = O means that the phenomenon has a negligibly small duration, not that the
phenomenon has no effect.)

6FClein = 0 (72)
Orcplmax depends on the characteristics of the fault-causing phenomenon for which the design is targeted.

Arp denotes the actual duration of the failure-detection delay measured in local clock ticks. We
assume that it is possible for a node to detect a failure condition immediately. Apply.x is implementation-
dependent. dpp denotes the actual duration of the failure-detection delay measured in nominal clock ticks.

SFDlmjn = O (73)

6FDlmax = (1 + pO)AFDImaX (74)

Let trcpo denote the time at which the fault-causing phenomenon begins. Let tiegu; and teesearn denote

the earliest and latest times, respectively, at which nodes affected by the fault-causing phenomenon enter
the Self-Test mode.

trestart) = trcp,0 + OFcplmin + OFDlmin

107

= trcpo (7.5)

And:

trestarch = tFcp0 + Orcplmax/To + (1 + Po)Arplmax (7.6)

Let 5.« denote the upper bound on the relative time skew when entering the Self-Test mode for
restart, measured in nominal clock ticks.

Tlrestart = trestarl,h - treslarl,l

= Opcplmax/To + (1 + Po)Arpliax (7.7)

7.2. Duration of the Self-Test mode

The Local Upset Abatement Delay (LUAD) for a transient-fault scenario is defined as the delay from
the time the fault-causing phenomenon reaches a node until the node has regained control of its local
operation. Local regaining of control is assumed to occur after the node has detected the failure
condition, at which time the node disables its broadcast outputs and transitions to the Self-Test mode. In
the Self-Test mode, the node first performs a full local reset and then begins the execution of the self-test
procedure. This local reset activity should cover the Communication and Computation modules. The
duration of the reset is implementation-dependent. Let & yap denote the actual duration of the Local
Upset Abatement Delay, measured in units of nominal clock ticks.

6LUADlmax = trestarl,h - tFCP,O
= Okcplmar/To + (1 + Po)Applmax (7.8)

The Observed Upset Abatement Delay (OUAD) for a transient-fault scenario is defined as the delay
from the time the fault-causing phenomenon begins until the affected nodes can be consistently
recognized by all direct observers as being untrustworthy. Note that this delay is defined with respect to
the effects perceived by the observing nodes. Thus, the message reception delay must be taken into
consideration. Let doyap denote the actual duration of the Observed Upset Abatement Delay, measured in
units of nominal clock ticks.

SouaD!max = OLuADImax + I'pph
= 6FCleax/ﬁCO + (1 + pO)AFDlmax + rPP,h (79)
Agtv denotes the duration of the Self-Test mode for a ROBUS node, measured in units of local clock
ticks. Agry is assumed constant. The duration of the Self-Test mode must satisfy the timing requirements
for the expected transient-fault scenarios. To increase the probability that a restarting node does not trust

an affected node, we require that the restarting nodes exit the Self-Test mode only after the latest time at
which affected nodes can be incorrectly diagnosed as trustworthy.

trestarct + Astm/ (1 + Po) 2 tregtarch + Tpph

ASTM/(1 + PO) 2 Testart + I.PP,h

108

Astm/(1 + Po) = Souaplmax (7.10)
In terms of local clock ticks, the above inequality corresponds to the following constraint:

Astn 2T (1 + p)Souanlmas | (7.11)

7.3. Bound on the relative local-time skew at the end of the Self-Test mode

Ttstm denotes the upper bound on the relative time skew at the end of the Self-Test mode, measured in
nominal clock ticks.

Tstm = MAX(TpoE, Trestart) + [(1 4 Po) - 1/(1 + po)JAstm (7.12)

109

8. Clique Detection mode

The Clique Detection mode is composed of three main processes: Local Diagnosis Acquisition,
Synchronization Acquisition, and Collective Diagnosis Acquisition.
8.1. Local Diagnosis Acquisition

Local Diagnosis Acquisition (a.k.a., Preliminary Diagnosis) is composed of two consecutive
observation intervals, each with a duration at least as large as a resynchronization interval. App pegin
denotes the delay from the time a node exits the Self-Test mode until the beginning of the first
observation interval, measured in local-clock ticks. The value of Apppegin 1S determined by the
implementation and assumed constant.
8.1.1. Bound on the duration of an observation phase

It is assumed that, at the earliest, a node in Local Diagnosis Acquisition can detect the absence of a
valid clique as soon as it enters the observation phase. Appow denotes the duration of the observation
intervals (or “windows”), measured in local-clock ticks. The value of Appow is determined by the
implementation and assumed constant. Appow should be large enough to cover the duration of a
resynchronization cycle measured in local-clock ticks.

Appow 2 P (8.1)

P is the nominal resynchronization period given in Section 5 of this document.

8.1.2. Bound on the duration of Local Diagnosis Acquisition
Let dpp denote the actual duration of Local Diagnosis Acquisition measured in nominal clock ticks.
6PDlmjn = APD,begin/(l'H:)O) (82)

Opplmax = (14+P0)(App pegin + 2App.ow) (8.3)

8.2. Synchronization Acquisition

Synchronization Acquisition is composed of the Frame Synchronization and Synchronization Capture
protocols. Synchronization Acquisition ends with the synchronization reset, at which point the local time
is set to 0.

8.2.1. Frame Synchronization

It is assumed that a node can detect the absence of a valid clique at any time during Synchronization
Acquisition. Aggpegin denotes the delay from the end of the second observation window during Local

111

Diagnosis Acquisition to the beginning of the Frame Synchronization protocol during Synchronization
Acquisition, measured in local clock ticks. Ags pegin 1S implementation-dependent and assumed constant.

Ars denotes the actual duration of the execution of the Frame Synchronization protocol measured in
local clock ticks. Agslnax is given in Section 5 of this document. Jgs denotes the actual duration of the
Frame Synchronization protocol measured in nominal clock ticks.

6FSlmax = (1 + pO)AFslmax (84)

8.2.2. Synchronization Capture

We assume that the Synchronization Capture protocol begins immediately after the Frame
Synchronization protocol is complete. We want to determine a bound on the duration of Synchronization
Capture protocol.

dsc denotes the actual duration of the execution of the Synchronization Capture protocol measured in
nominal clock ticks. The execution of the protocol may begin shortly after the ECHO messages are
transmitted by the clique during the execution of the Synchronization Preservation protocol. In that case,
the end of the Synchronization Capture protocol would occur after the reset is applied during the next
execution of the Synchronization Preservation protocol. To specify a bound for the duration of the
Synchronization Capture protocol, we consider an interval containing two consecutive executions of the
Synchronization Preservation protocol. splnax denotes the upper bound on the real-time duration of the
execution of the Synchronization Preservation protocol. Ospln.x is given in Section 5 of this document.
Tsp denotes the scheduled local time at which the execution of the Synchronization Preservation protocol
begins.

6SClmax = pmax + 6Sleax

= (1 + po)Tsp + 28splmax (8.5)

8.2.3. Bound on the duration of Synchronization Acquisition

Let dsp denote the actual duration of the execution of Synchronization Acquisition measured in
nominal clock ticks.

6SAlmax = (1+pO)AFS,begin + 6FSlmax + 6SCImax (86)

Asa denotes the actual duration of Synchronization Acquisition measured in local clock ticks. We
want to ensure that a count of Agaln.x local ticks takes no fewer than 8gal,.x nominal ticks.

ASAImaX/(1+pO) 2 6SAImax (87)
We choose the minimum value that satisfies that constraint.

ASAlmax = r(1+p0)65A|max—| (88)

112

8.3. Bound on the duration of the Clique Detection mode

Synchronization Acquisition ends with the synchronization reset, at which point the local time is set to
0. From that point on, the local time should be synchronized to the clique in Preservation mode. The
delays to begin and complete the Collective Diagnosis Acquisition protocol in the Clique Detection mode
are the same as for the Collective Diagnosis protocol in Clique Preservation mode. Acp pegin denotes the
time from the synchronization reset to the beginning of the Collective Diagnosis protocol, measured in
local clock ticks. Acp denotes the time to complete the execution of the Collective Diagnosis protocol in
local clock ticks. The transition to the Clique Join mode occurs at the beginning of execution of the
Schedule Update protocol. Before that point, a detected failure attributable to the absence of a clique
results in a transition to the Clique Initialization mode. Agypesin denotes the time from the end of the
Collective Diagnosis protocol to the beginning of the Schedule Update protocol, measured in local clock
ticks. Acppegine Acp, and Agupegin are implementation-dependent and determined by the time-indexed
operation schedule specifying the timing for bus activities.

After detecting the absence of a valid clique, a node clears its state and transitions to the Clique
Initialization mode. Acpm.civ denotes the delay to transition to the Clique Initialization mode after
detecting the absence of a valid clique, measured in units of local clock ticks. Acpm.cmm iS

implementation-dependent and assumed constant. Ocpy denotes the actual duration of the Clique
Detection mode for a ROBUS node, measured in units of nominal clock ticks.

Scpmlmin = Opplmin + Acpm-civ/(1 + Po) (8.9

6CDMlmax = 6PDlmax + 6SAlmax + [(1+P0) (ACD,begin + ACD + ASU,begin + ACDM»CIM)] (810)

113

9. Clique Initialization mode

This section examines timing aspects related to the Clique Initialization mode. Only Initial Diagnosis
and Initial Synchronization are discussed. The operation during Collective Diagnosis is the same as
during Clique Preservation mode, which is discussed in Section 6.

9.1. Bound on the relative time skew at the beginning of the Clique Initialization mode

Temmpecin denotes the upper bound on the relative time skew at the beginning of the Clique
Initialization mode, measured in nominal clock ticks.

TlciM,BEGIN = TlsTm + (Ocomlmax = Ocomlmin) 9.1

Tstm is defined in Section 7, and Scpmlmax and dcpmlmin are defined in Section 8 of this document.

9.2. Initial Diagnosis

To simplify the presentation, we would like to compute a single upper bound for the relative local-
time skew during the execution of the Initial Diagnosis and Initial Synchronization protocols. Let Tp,s
denote that bound, measured in nominal clock ticks.

Figure 9.1 shows the message flow graph for Initial Diagnosis. BIUs and RMUs are assumed to have
the same timing characteristics. The analysis presented here does not refer to the kind of the node
sending or receiving messages for any of the protocol processes.

w @ B
RMUs @ @

Figure 9.1: Message flow graph for the Initial Diagnosis protocol

Amp pegin denotes the delay from the time a node enters the Clique Initialization mode until the time it
begins the execution of the Initial Diagnosis protocol, measured in units of local clock ticks. The value of
Ap pegin 18 determined by the implementation and assumed constant.

9.2.1. Communication between processes PO and P1

The following variables are defined: Tjp denotes the local time triggering the execution of the Initial
Diagnosis protocol; Tip popi rer denotes the reference time for the communication between processes PO
and P1; Tipposnp denotes the time at which process PO sends the message; Tippircve denotes the
expected time of reception in process P1; Spppy denotes the Send Process delay for process PO;
App1revwnp denotes the delay from the communication reference time to the opening of the reception
window in process P1; Rpp denotes the nominal point-to-point reception delay; Wip peskew denotes the size

115

of the deskewing window in process P1; Wip pesiewpre denotes the pre-expectation window in process P1
(i.e., the size of the section of the deskewing window before the expected time of reception); Wip peskew.post
denotes the post-expectation window in process P1 (i.e., the size of the section of the deskewing window
after the expected time of reception); A pprevlabs-max denotes the absolute value of the maximum error in
the actual time of reception in process P1 for a good source-receiver pair; Cipp; denotes the computation
delay in process P1 (The computation delay is measured from the end of the deskewing window. Ccpp, is
assumed constant.); App pi.c.enp denotes the delay in process P1 from the end of the computation to the end
of the execution of the Initial Diagnosis protocol (Apppi cenp 1S assumed constant.); and Ap denotes the
duration of the execution of the Initial Diagnosis protocol.

Typ is the reference time for the communication between processes PO and P1. Given that the local
time is reset at the start of the Clique Initialization mode, then:

Tippo-p1REF = Tip = Aip pegin 9.2)
To determine Wp peskew,» W€ need the maximum error in the expected time of reception for the Initial

Diagnosis protocol messages, Appprcvhbsmax- Based on the analysis presented for point-to-point
communication:

A pp RV abs-max = L(l + Po)(Tipais + max(Upp) , uPP,h))J 9.3)

Wpp,; and Uppy, are given in Section 4 of this document. For the deskewing window:

Wb peskew = 2A10 pp. RV labs-max + 1 9.4)
WID,DeskeW,pre = AID,PP,RCVlabs-malx (95)
WID,Deskew,post = AID,PP,RCVlabs—maX +1 (96)

We expect the upper bound on the relative local-time skew during the execution of the protocol to be
much larger than any minimum timing constraints associated with the process of communication. Based
on this, we assume that the following condition holds for the communication between processes PO and
PI1.

Sippolmin + Rpp < Ap p1. RevwNDlmin + Wip peskew,pre 9.7

For this case:

Sip.po = Ap,p1 ReVWNDImin + WD peskew,pre - Rpp (9.8)
And:

Ap pi RevwND = Aip p1 RCVWNDlmin 9.9
So:

TID,PO,SND = TID,PO—PI,REF + SID,PO

= Tip + App1.RcvWNDImin + WD peskew.pre - Rpp (9.10)

116

And:
TID,PI,RCV,E = TID,PO,SND + RPP

= Tip + A p1 RevwNDImin + WD Deskew,pre (9.11)

9.2.2. Bound on the duration of the Initial Diagnosis protocol
Let Tp p1.c denote the local-time at which the Computation Process outputs the result for process P1.
Tiopic = Topireve + Wi peskew,post T Cipipi 9.12)
Let Tip p1 enp denote the local-time at which the execution of the Initial Diagnosis protocol ends.
Tipp1eno = Tiopic + Appic-end (9.13)
The duration of the execution of the Initial Diagnosis protocol is:
Ap = TID,PI,END -Tp

= Aip p1.RevwWNDImin + Wb peskew + Cipp1 + Aip p1.c-EnD (9.14)

9.3. Initial Synchronization

Let Ty denote the local time triggering the execution of the Initial Synchronization protocol. Ay pegin
denotes the delay from the end of Initial Diagnosis to the beginning of Initial Synchronization, measured
in units of local clock ticks. The value of Ajgpeein 18 determined by the implementation and assumed

constant.

Ais pegin = Tis - Tip p1EnD (9.15)

9.3.1. Bound on the relative skew at the beginning of the Initial Synchronization protocol

Let s peciv denote the upper bound on the relative local-time skew at the beginning of the Initial
Synchronization protocol, measured in nominal clock ticks.

Tus,BEGIN = Tlemv,BeGIN + [(1 + Po) - 1/(1 + Po) (A begin + Aip + Ass begin) (9.16)

9.3.2. Communication between processes PO and P1

This is discussed in Section 5 of this document. There, T denotes the bound on the relative skew
during the execution of the Initial Synchronization protocol. Thus:

Tus = Tp+Is 9.17)

117

9.3.3. Bound on the duration of the Initial Synchronization protocol

dislmax denotes the upper bound on the real-time duration of the execution of the Initial Synchronization
protocol measured from the earliest time at which a node begins executing the protocol to the latest time
at which a node applies the synchronization reset. s synclmaxs Ats.p2.bn » Atspspn » ad Ajspapp are given by

Ssynclmax, Agynep2in > Asynep3in > and Agyne papn in Section 5 of this document with By, replaced by Big po.

Oislmax = Tus pecin + Max(Ars paun » Arspaih > Ars pain) (9.18)

Let Agslmax denotes the upper bound on the duration of the execution of the Initial Synchronization
protocol measured in local clock ticks. We want the fastest count of Al ticks to be greater than or
equal to Oyslmax-

AISlmax/(1 + pO) 2 8Islmax (919)

We choose the following value for Aglyax.

Asslnax = |_(1 + pO)SISImax—| (9.20)

9.4. Bound on the relative skew during Initial Diagnosis and Initial Synchronization
The bound on the relative local-time skew during Initial Diagnosis and Initial Synchronization is:
Tupsis = TusseaiNn + [(1+ Po) - 1/(1 + Po)18ishmax 9.21)

The following variables are defined in order to simplify the expressions presented below.

Xis.mh = Max(Ars pa.hs Arspsun, Arspamn) (9.22)
6o = [(1 + po) - 1/(1 + po)] (9.23)
Then:

Tup+1s = Tis BEGIN + Oo(Ts BEGIN + Xis H.n)
= 0oXisun + (1 + Op)Ts pEGIN
= 0oXisih + (1 + 60)[TenveaN + (A pegin + Aip + Ars pegin) |
= 0oXisin + (1 + 60)[TenvBecN + Oo(Ap pegin + At begin) | + Go(1 + Go)Ap (9.24)
The following inequality holds for Wip pegkew:
Wi peskew < 2(1 + Po)[Tps1s + max(Uep s, Uppn)] + 1 (9.25)
Applying this inequality to App, then:

Tupars < OoXis,un + (1 + 60)[Tem BeciN + Oo(Aip begin + Als pegin)]

118

+ 0o(1 + 60){ Aip p1.RevWNDImin + Cipp1 + A p1.cEND
+ [2(1 + po)(Tups1s + max(Mep, Uppy)) + 11}
Again, the definition of the following variable simplifies the presentation.
Y = 6oXisn + (1 + 60)[Temv BeGin + Oo(Arp pegin + At pegin)]
+ 0o(1 + 60)(Amp.p1.RevWNDImin + Cipp1 + A p1.c-END)
So:
Tupss <Y + Oo(1 + Go)[2(1 + Po)(Tpsrs + max(Uep, Uppn)) + 1]
Tup.s < {Y + Go(1 + Go)[2(1 + po)max (Ui, Hppn) + 11}/{1 - 260(1 + Go)(1 + po) }
We choose the right side of this expression as the value for Tp,s.

Tpsas = {Y + 6o(1 + 60)[2(1 + po)max(Upp, Wepn) + 11}/{1 - 26¢(1 + Go)(1 + po) }

119

(9.26)

9.27)

(9.28)

(9.29)

10. RPP requirements

ROBUS-2 is a developmental version of ROBUS intended for laboratory experimentation and
capability demonstrations. The RPP is the component that realizes the characteristic functionality of
ROBUS. The ROBUS-2 RPP shall implement the behavior summarized in Section 2 of this document
and described in detail in [Torres 05]. The design of the RPP shall comply with the following additional
requirements.

e The Self-Test major mode will not include an actual self-test of the RPP or the FCR. The main
reason for this requirement is to simplify the design of the RPP. The exclusion of self tests increases
the likelihood that a faulty node will exit the Self-Test mode and eventually send bad messages to
trustworthy nodes. Given the fault tolerance capabilities of ROBUS, the resulting increase in the
probability of system failure should be small. That is an acceptable trade-off for this version of the
RPP.

e Input-error monitoring shall be performed concurrently with the execution of the Frame
Synchronization, Synchronization Capture, and Initial Synchronization protocols. This monitoring
shall be independently performed for each opposite-kind node. Error detection shall be based on the
validity of the received message sequence in the context of the protocols being executed. The
detection of an error for a particular input source shall result in an immediate accusation.

e The error syndromes generated by the Frame Synchronization protocol (see [Torres 05]) shall be
considered in the determination of the set of eligible voters for the Synchronization Capture protocol.
This requirement is meant to ensure that the Synchronization Capture protocol is started with the
latest available diagnostic information.

e An error check shall be implemented to corroborate the validity of the eligible voters latched at the
beginning of the execution of the Synchronization Capture and Initial Synchronization protocols.
These protocols are defined with the assumption that a majority of the latched eligible voters are
trustworthy. This check shall consist of a comparison of the number of eligible voters at the
beginning of the protocol execution against the number of eligible voters at the end. A failure shall
be declared if a majority of the initial eligible voters are not in the final set of eligible voters. The
determination of the final set of eligible voters shall include the error syndromes generated by the
concurrent input-error monitors and the cross-lane checks described in the definition of the protocols
(see [Torres 05]).

® A timeout check shall be performed for the Synchronization Acquisition and Initial Synchronization
protocols. These protocols depend on receiving the expected synchronization messages from a
majority of the eligible voters in order to complete their execution. A timeout error shall result in the
immediate termination of the protocol execution and the declaration of a failure.

* A timeout check shall be performed for the resynchronization period. The synchronization period is
the time interval between consecutive synchronization-reset events at a BIU or RMU node generated
by synchronization protocols. Three sequences of synchronization protocols define resynchronization
intervals: from Synchronization Capture to Synchronization Preservation, from Initial
Synchronization to Synchronization Preservation, and from one execution of Synchronization
Preservation to the next.

121

The RPP shall be capable of processing Schedule Update messages with a data-introduction interval
greater than or equal to one local oscillator clock tick.

For the PE Broadcast protocol, all the BIUs shall broadcast a message for each execution of the
protocol. The scheduled BIU shall broadcast a message from its attached PE, and all other BIUs shall
broadcast a diagnostic message corresponding to the current local accusations against RMU nodes.

The RPP shall be capable of processing PE Broadcast messages with a data-introduction interval
greater than or equal to one local oscillator clock tick.

For BIUs and RMUs the time interval between the last scheduled PE Broadcast message and the
message for the Accusation Exchange protocol shall be the same as the data-introduction interval for
the PE Broadcast messages. So, if there are K4 Scheduled PE messages, each BIU and RMU is
expected to transmit Kpeq + 1 messages with a constant DII during the PE Communication mode.

The RPP shall be able to behave as either a BIU or an RMU. The desired node kind shall be
selectable at the RPP external interface.

The RPP external interface shall include input reset and enable control signals, as well as an output
signal indicating when the RPP has detected a local or bus failure. This feature enables the
implementation of a coordinated reset for all the circuitry within a particular FCR.

The node identification number shall be selectable at the RPP external interface.

The RPP shall be described in the VHDL hardware description language.

The RPP VHDL description shall be highly parameterized in the behavioral and structural domains.
This feature enables the reuse of the RPP description for a wide range of ROBUS-2 system

characteristics.

The synthesized RPP shall fit on a small to medium size FPGA (Field-Programmable Gate Array).

122

11. RPP design description

This section describes the design of the ROBUS-2 protocol processor, including insight into the
synthesis process, the top-level design, and the design of the RPP sub-units.

11.1. High-level design concepts

This section presents some of the ideas that influenced the design of the RPP.

11.1.1. Functional partitions

The organization of the RPP is determined by the partitioning of functions along several lines. The
first is a separation of operational and diagnostic functions. As illustrated in Figure 11.1, the RPP is
composed of two separate but coordinated systems. The operational system handles the communication
and computation activities required by the distributed protocols, in addition to all the processing
associated with the mode logic, local time, and PE communication schedule. The diagnostic system
monitors the operational system and provides timely information for reconfiguration and error
containment. To support the fault-tolerance mechanisms, the diagnostic processes must work in close
coordination with the operational system processes. The basic functions of the diagnostic system are to
detect errors during the execution of the protocols, assess the status of individual nodes, and assess the
status of the bus.

Observations
Operational | ——Ppf Diagnostic
system system
-«
Node and

bus diagnosis

Figure 11.1: RPP functional partition: operations and diagnostics

The RPP is further partitioned into reception and transmission functions, as illustrated in Figure 11.2.
The ROBUS protocols require that the nodes be able to simultaneously send and receive messages. The
data handled by the nodes includes node diagnoses, local-time synchronization events, PE-
communication schedule messages, and PE messages. For all the protocols, the reception of messages is
followed by a computation function determined by the protocol processes being executed. The
computation results can be passed forward for transmission or stored locally, depending on the protocol
being executed. The reception and transmission functions must be coordinated with respect to timing
events or the local time, depending on whether a synchronization protocol or a synchronous protocol is
being executed.

123

Diagnosis,
Local Time,
PE Schedule, and
PE messages

! > Reception and Transmision
! Computation —p
Ly —>

Figure 11.2: RPP functional partition: reception and transmission

Most of the ROBUS protocols exhibit a high degree of symmetry in the behavior of BIUs and RMUs.
One of the main distinguishing factors between BIUs and RMUs is that the BIUs have external
connections to the PEs as well as to the RMUs, while the RMUs communicate only with the BIUs. Since
the same RPP design must work as either a BIU or an RMU, the RPP must include functionality to
communicate with the PEs. As shown in Figure 11.3, the RPP is partitioned into bus functions and PE
interfacing functions. The bus-functions section handles all the functionality for communication between
BIUs and RMUs, and its implementation exploits the inherent symmetry of the protocols. The PE
interface is active only when the RPP performs as a BIU.

Protocol

results
Bus —P PE

functions Interface

-
PE
Messages

Figure 11.3: RPP functional partition: bus functions and PE interface

The activities of the bus are organized in a hierarchy with the following levels: major mode, minor
mode, protocol, (protocol) process, and (process) step. The major and minor modes are high-level,
node management states that specify how a node is supposed to interact with the other nodes on the bus.
The transitions for major and minor modes depend on the local time, computed synchronization events,
and the diagnostic assessment of the local node and the clique. For a given value of the major and minor
modes, a node must execute a particular protocol or sequence of protocols. The implementation of the
protocols requires intricate signaling sequences to control the operation of the functional units that
perform the actual data processing. As illustrated in Figure 11.4, the RPP control functions are
partitioned into two groups. The mode control section handles the high-level control functions. The
protocol control section manages the execution of the protocols. The command from the mode control
section includes all the high-level state information needed to fully specify the protocol to be executed
and the diagnostic operations to be performed.

Command
Mode ——p Protocol
control control
«——
Status

Figure 11.4: RPP functional partition: mode and protocol control

124

For most protocols executed in more than one major mode, the required processing is the same or
differs only slightly. Many of these major-mode-dependent variations affect the diagnostic system, not
the operational system. In addition, examination of the required processing for the major and minor mode
sequences reveals that they can be reduced to a simple protocol execution pattern, as shown in Figure
11.5. This cyclic pattern with two entry paths, one to merge with an existing clique and the other to form
a new clique, is the result of the required service delivery sequence and the chosen diagnostic policy for
ROBUS-2. The transitions to the Collective Diagnosis protocol occur after the synchronization of the
local time. Once inside the loop, the execution of protocols is triggered by the local time. The blocks in
Figure 11.5 correspond to the redefined minor modes as actually implemented on the RPP. The protocol
section of the RPP executes all the processing activities corresponding to a minor mode before being
ready to receive the next command. In addition to the minor mode, the command from the mode control
section must include all other mode-relevant information needed to properly execute the protocols.

11.1.2. Distributed pipelining

According to the requirements, the RPP must be capable of processing messages with a DII of one or
greater (i.e., a maximum message throughput of one message per local clock tick) for the Schedule
Update and PE Communication modes. The actual DII is a behavioral parameter specified before
synthesis. The selection of the DII depends on factors like the performance of the PE-BIU links, the
throughput capacity of the communication links between BIUs and RMUs, the bit error rate of the links,
and desired timing-error coverage at the receiving end of the links. Notice that as the DII is decreased,
the reception intervals over which messages are expected to arrive will get closer and eventually overlap.
The input-timing checks and their effectiveness are necessarily impacted by an overlap in the reception
intervals. This must be taken into consideration in the design of the RPP.

The Schedule Update, PE Broadcast, and Accusation Exchange protocols are synchronous protocols.
The timing of execution of the synchronous protocols is specified by a time-indexed operation schedule.
The scheduling of operations is based on a distributed synchronous composition abstract model of the
system in which a single oscillator drives a common local-time clock and the fixed-delay processes
corresponding to the communication and computation operations of the BIUs and RMUs (see [Torres
05]).

For this version of the RPP, the local-time clock and the message processing logic are driven by the
same physical oscillator. To meet the DII requirement, the processing is pipelined with a stage delay of
one clock tick. Because of the deskewing function required for the synchronous communication, the
actual input-to-output processing delay for any particular message depends on its time of arrival.
However, the delay from the time a message is read from the input buffer until its processing is complete
is fixed and determined only by the number of pipeline stages. The reading of messages from the input
buffers is a time-triggered operation.

125

External reset

Any major mode

& enable & local or bus failure
Reset Clique Det;ctlon mode
no valid Clique
Self-Test Reset

v

v

Local Diagnosis

Acquisition and

Synchronization
Acquisition

Initial Diagnosis
and Initial
Synchronization

Ny e

Collective
Diagnosis

<_

v LTs

Schedule
Update

Communication

+ LTpg
PE

+ LTsp

Synchronization

Preservation

11.2. RPP top-level design

11.2.1. Block diagram

Detection and Clique Initialization modes.

level control functions and the interaction with

Figure 11.5: Minor-mode command transitions

This section describes the top-level design of the RPP.

Figure 11.6 shows the block diagram for the RPP. The Mode Control Unit (MCU) handles the high-
other control logic within the same FCR. The Input Unit
(IU) handles the reception of messages, implements the Frame Synchronization protocol, and controls the
timing of data introduction for the computation pipeline. The Input Diagnostics Unit (IDU) checks the
content of the received messages and performs the asynchronous monitoring function for the Clique
The Route and Vote Unit (RVU) performs the actual
computation, including routing scheduled messages for the PE Broadcast protocol and dynamic voting for
other protocols. The Node Diagnostics Unit (NDU) performs the diagnostic assessment of nodes based

126

on error syndromes generated by the IU, IDU, and RVU. The Output Unit (OU) handles the
transmission of messages. The Status Monitoring Unit (SMU) assesses the status of the local node and
the bus. The PE Input Unit (PE_IU) and the PE Output Unit (PE_OU) handle the communication with

the PE.

Messages from

Input
<'|: Lgcal ———]| Schedule Unit
Time
RPP |
Control CMotdel C ‘ ‘}
Interface %n 'rto
\l/ ni Input
<’\j Diagnostics
[— Unit Nod
ode
<: M Diagnostics
{} Unit
Route
and Vote <,l—— —
Unit
= X
Output
Unit ‘ ‘
o E=)>
Interface
Status
o Monitoring
Unit
<:i Input @ A A%
Unit
Output
Schedule Unit

!

Messages to
Opposite-Kind Nodes

Figure 11.6: RPP block diagram

127

The MCU, IU, and OU modules have time-driven control functions triggered by the local time or by
computed synchronization events. The IU and OU include independent schedule processing functions
that store the computed schedule and perform the assessment. The IU reports the result of the schedule
assessment to the MCU.

11.2.2. Interface

Figure 11.7 shows the VHDL entity declaration for the top level module of the ROBUS Protocol
Processor. Signal CLK_i is the oscillator-clock signal. The “External inputs” signals correspond to the
RPP Control Interface. Signal Reset_In_i forces a synchronous reset when set TRUE. Failure_In_i is
coordinated with Reset_In_i and is set TRUE to indicate that the reset is due to an FCR failure. Signal
Enable_In_i can be used to hold the RPP in an idle state after Reset_In_i is asserted. When Enable_In_i
is asserted, the RPP becomes operational and Enable_In_i is ignored until the next time Reset_In_i is
asserted. Signals Node_Kind_In_i and Node_Id_In_i specify the kind (i.e., RMU or BIU) and
identification number. Failure_Out_o is asserted when the RPP detects an internal fault or a failure of
the bus.

Signal ROBUS_Input_Vect_In_i is a VHDL record array with one record for each node of the
opposite kind. Each record has three fields: Strobe, Message, and Synd. Field Strobe is asserted every
time a new message is received. Field Message has the content of the received message. Field Synd is a
vector carrying the error bits generated by the corresponding receiver.

Signal ROBUS_Output_Out_o is a record composed of field Strobe (which is asserted when a new
message is being sent) and field Message (which has the content of the message).

The PE Interface has two parts. The interface for PE-to-RPP data flow is composed of two signals:
PE_Input_i and PE_Read_Out_o. Signal PE_Read_out_o is aserted when the RPP is reading the next
PE message. Signal PE_Input_i is a record with fields Message (the message from the PE) and Synd (a
Boolean signal which is asserted when an error has been detected in the communication from the PE).
The interface for RPP-to-PE data flow has only signal PE_QOutput_o, which is a record with fields
Message (the content of the message sent to the PE) and Strobe (asserted when a new message is ready).

128

entity RPP_Unit is
port (CLK_1i : in bit ;

—-— External inputs

Reset_In_i : in Dboolean ;
Failure_In_i : in Dboolean ;
Enable_In_1i : in Dboolean ;
Node_Id In_i : in Node_Id_Typ ;
Node_Kind_In_1i : in Node_Kind_Typ ;
Failure_Out_o : out boolean ;

—— Inputs from other ROBUS nodes
ROBUS_Input_Vect_In_i : in ROBUS_Input_Vect_Typ ;

—— Outputs to other ROBUS nodes
ROBUS_Output_Out_o : out ROBUS_Output_Typ ;

—— Inputs from PE

—-— External inputs from the PE

PE_Input_1i : in PE_Input_Typ ;
PE_Read_Out_o : out boolean ;

—— Outputs to PE
PE_Output_o : out PE_Output_Typ

)

end RPP_Unit ;

Figure 11.7: VHDL entity declaration for the top-level RPP description

11.3. Mode Control Unit

The MCU performs the following functions: handles the interaction with other control logic within the
same FCR; stores the assigned node kind and node identification number; implements the mode transition
logic (i.e., major mode, diagnostic cycle, and minor mode transitions); controls the enabling of the send
output to opposite-kind nodes; and implements the local time function.

11.3.1. Block diagram

Figure 11.8 shows the block diagram for the MCU. The Controller is a 12-state Mealy machine
(FSM) implementing the logic in Figure 11.5. Additional state is stored in the Major Mode, Diagnostic
Cycle, and Output Status registers. The Local Time timer triggers the issuing of commands after
synchronization is achieved. The Timer block is used to measure the time during the Self-Test mode
Astm (see Section 7). The Node Id and Node Kind are loaded directly from the RPP Control Interface and
forwarded to the other RPP sub-units as part of the set of command signals.

129

From
RPP Control Interface

Timer Local Major Diagnostic Output
(\ Time Mode Cycle Status

| | | T T

Node Node Controller
1d Kind (FSM)
Command Failure and ~ Sync Sched
No_Clique Reset Ass;ssment RPP Control
(From (From (From Interface
SMU) RVU) IU)
Node_Reset
N %
~

MCU Command
(to all units)

Figure 11.8: MCU block diagram

11.3.2. Interface

Figure 11.9 shows the VHDL entity declaration for the MCU. The “External inputs” and “External
outputs” signals correspond to the RPP Control Interface as described previously for the top-level design.
The signals from the Input Unit indicate whether the currently loaded PE communication schedule is
valid or not, and whether the available schedule (loaded or default) is zero (i.e., no scheduled messages).
Signal RVU_Sync_Reset_i indicates when it is time to reset the Local Time and start a new
synchronization cycle. Signal SMU_Failure_i indicates when a local failure or a clique failure has been
detected. SMU_No_Clique_i is asserted when no valid clique is detected. The outputs to the other RPP
units include signals Node_Kind_o and Node_Id_o, which are held constant during the operation of the
RPP. Signal MCU_Node_Reset_o commands an immediate reset all the RPP units. MCU_Comand_o
is a record signal with fields Major_Mode (current major mode), Diagnostic_Cycle, Minor_Mode,
Schedule_States (valid, zero, or invalid), and Output_Enable. Signal MCU_Ready_o is asserted to
indicate that a new MCU command is being issued.

130

entity Mode_Control_Unit is
port (CLK_1i : in bit ;

—-— External inputs

Reset_In_i : in Dboolean ;
Failure_In_i : in Dboolean ;
Enable_In_1i : in Dboolean ;
Node_Id_ In_i : in Node_Id_Typ ;
Node_Kind_In_1i : in Node_Kind_Typ ;

—-— External outputs
Failure_Out_o : out boolean ;

—— From Input Unit
IU_Zero_Schedule_i : in Dboolean ;
IU_Invalid_Schedule_i : in boolean ;

—-— From Route and Vote Unit
RVU_Sync_Reset_1i : in Dboolean ;

—-— From Status Monitoring Unit
SMU_Failure_1i : in Dboolean ;

SMU_No_Clique_1i : in Dboolean ;

—— Output to other unit

Node_Id_o : out Node_Id_Typ ;
Node_Kind_o : out Node_Kind_typ ;
MCU_Node_Reset_o : out boolean ;
MCU_Command_o : out MCU_Cmnd_Typ ;

MCU_Ready_o : out boolean
)

end Mode_Control_Unit ;

Figure 11.9: VHDL entity declaration for the Mode Control Unit

11.4. Schedule Processor

The functions assigned to the Schedule Processor include storing the schedule computed by the
Schedule Update protocol, assessing the loaded schedule, and reading and interpreting the current
schedule. If the currently loaded schedule is invalid, the Schedule Processor uses the default schedule.
Since the RPP has separate reception and transmission processes (embodied by the IU and OU,
respectively), each one is given a separate Schedule Processor.

11.4.1. Block diagram

Figure 11.10 shows the block diagram for the Schedule Processor. The Controller is a 7-state Mealy
machine. The output from the RVU is stored in the Schedule Memory, which consists of a FIFO (first-in-
first-out) buffer. The output from the Schedule Memory includes the source Id and number of scheduled
messages for each scheduled PE, in addition to the total number of scheduled sources. The Schedule

131

Assessment module determines the validity of the loaded schedule by comparing the number of scheduled
messages against the maximum allowed and by detecting a PE_ERROR result for any of the sources. If
the schedule is invalid, the content of the Default Schedule is used. The Message Counter counts the
number of messages processed for the current source and signals the controller when the last message has
been reached. The Source Counter is used as a source Id generator during schedule load, and as a source
counter during schedule execution.

From RVU
RVU Output Source
Counter
. >
I > Controller
A\ 4 (FSM) < Control
Schedule (From user)
Schedule Assessment
Default Memory
Schedule
Message
+ + Counter
\ Mux T
Zero_Schedule Invalid_Schedule Source_Id PE_or_ACC Last_Message
N J \— %
~

Schedule Assessment Current-Message Attributes

Figure 11.10: Block diagram for the Schedule Processor

11.4.2. Interface

Figure 11.11 shows the VHDL entity declaration for the Schedule Processor. The user of the
Processor is either the IU or the OU. The Reset_i forces an immediate synchronous reset.
SCH_Proc_Cmnd._i is used to command loading or execution of a schedule. SCH_Ready_i is asserted
when the attributes for the next message are needed. The signals from the RVU include
RVU_Transfrm_Result_i (the result stream from the Schedule Update protocol), RVU_Ready (asserted
when a new schedule result is available), and RVU_Last_Msg i (asserted when the last result has been
reached). Outputs SCH_Zero_o and SCH_Invalid_o indicate the assessment result for the currently
loaded schedule. SCH_Source _Id_o indicates the Id for the current source, SCH_PE_or ACC o is set
to PE when the current message is a PE message or to ACC when processing Accusation Exchange
protocol messages, and SCH_Last_Msg_o is asserted when the last message of the PE Communication
mode has been reached.

132

entity Schedule_Processor is
port (CLK_1i : in bit ;

—— From the user of this unit

Reset_1i : in Dboolean ;
SCH_Proc_Cmnd_1i : in Sched_Proc_Cmnd ;
SCH_Ready_1i : in Boolean ;

—-— From Route and Vote Unit
RVU_Transfrm_Result_i : in ROBUS_Msg_Typ ;

RVU_Ready_1i : in Boolean ;
RVU_Last_Msg_1i : in Dboolean ;

—— Outputs

SCH_Source_Id_o : out Node_Id_Typ ;
SCH_Last_Msg_o : out boolean ;
SCH_PE_or_ACC_o : out PE_or_ ACC_Typ ;
SCH_Zero_o : out boolean ;

SCH_Invalid_o : out boolean

)

end Schedule_Processor ;

Figure 11.11: VHDL entity declaration for the Schedule Processor

11.5. Input Unit

The Input Unit performs three main functions: message reception, frame synchronization, and control
of data introduction for the computation pipeline. The message reception modes include synchronous,
fixed-delay, and asynchronous-monitoring. The IU performs error detection for each of these modes.
Appendix A has the detailed IU specification.

11.5.1. Block diagram

Figure 11.12 shows the block diagram for the Input Unit. The Controller is a 35-state Mealy machine
that uses the MCU commands, RVU sync events, and the output of the Frame Synchronizer as timing
references to control the execution of the modules within the IU. Some Pipeline Control signals are
generated by the Controller and the rest are taken directly from the Schedule Processor. There is one
Message Receiver for each opposite-kind node. These modules are used for the three reception modes.
For synchronous reception, the Input Buffer behaves as a FIFO buffer with data being buffered upon
arrival and read from the buffer at predetermined values of the local times. For fixed-delay reception, the
sync pulses for INIT and ECHO messages are generated a fixed delay after their reception. For
asynchronous reception, the Input Buffer performs as a 1-tick delay register. The Error Detector is active
for all modes of reception. The error checks include link error (received from the communication
receivers), non-arrival of an expected message, reception of more messages than expected, input reception
rate too high, and reception of an unexpected message. The Frame Synchronizer implements the frame
synchronization protocol described in Appendix A.

133

Inputs from Communication Receivers

E—— e

Message Frame
i E B e
Receiver —P» Detrégtror Synchronizer
Message A "
+ \ 4 + ----- Receiver Timer —P @ontroller
Sync Pulse Input (FSM)
Generators Buffer Counter — P
Schedule
¢ ¢ + + + Processor >
v v

FS
- gt U U N

HOMe Data Pipeline ~ Sync Command
INIT and ECHO Message Pulses, IDU CI(I))nt;ol Ev)grllis
Message Content, Node Schedule
and Error Syndromes Diagnosis /Assessment

Figure 11.12: Block diagram for the Input Unit

11.5.2. Interface

Figure 11.13 shows the VHDL entity declaration for the Input Unit. The inputs from the MCU are
sent directly to the IU controller. Signal ROBUS_Input_Vect_i is a vector of records, with one record
for each node of the opposite kind. The fields of these records include Message (the message content),
Synd (the vector of link-error syndromes generated by the corresponding communication receiver), and
Strobe (which is asserted when a new message is received). Signals IDU_Invalid_Input_i and
IDU_Ready_i specify the initial set of eligible participants for the Frame Synchronization protocol. The
inputs from the RVU include the sync event signals RVU_Accept_Init_i and RVU_Accept_Echo_i
(each one generated by the corresponding Accept function), in addition to RVU_Transfrm_Result_i,
RVU_Ready_i, and RVU_Last_Msg i, which are used to load the results of the Schedule Update
protocol.

The outputs from the IU can be divided conceptually into several groups. Signals IU_Init_o and
IU_Echo_o represent synchronization events received in the form INT and ECHO messages. These
events are converted into pulses, which are then used by the RVU to compute the Accept(INIT) and
Accept(ECHO) functions. Signal IU_Input_Msg o is a vector containing the received message content
from each opposite kind node. The pipeline control signals include IU_Input_Strobe_o (for each input
port, the corresponding vector element is asserted one tick after a message is received), IU_Ready_o
(asserted at critical timing points in the processing of synchronization protocols, and when it is time to
process a synchronous-protocol message), IU_Receiving_o (asserted when the IU is expecting to receive
messages), [U_PE_or_ACC_o (taken from the Schedule Processor), IU_Source_Id_o (taken from the
Schedule Processor), and IU_Last_Msg_o (asserted when the last message in a stream is being processed
during Schedule Update and PE Communication). Signals IU_Synd_o and IU_Imm_Synd_o are of type
record and carry the error syndromes. IU_Invalid_Schedule_o and IU_Zero_Schedule_o are the
assessment results generated by the Schedule Processor.

134

entity Input_Unit is

port

)

(

CLK_i : in bit ;

—-— From Mode Control Unit

Node_TId_i : in Node_Id_Typ ;
Node_Kind_1i : in Node_Kind_typ ;
MCU_Node_Reset_1i : in Dboolean ;
MCU_Command_ i : in MCU_Cmnd_Typ ;
MCU_Ready_1 : in Dboolean ;

—— From other ROBUS nodes
ROBUS_Input_Vect_1i : in ROBUS_Input_Vect_Typ ;

—— From Input Diagnostics Unit
IDU_Invalid_Input_1i : in OK_Bool_Vect_Typ ;
IDU_Ready_1 : in Dboolean ;

—-— From Route and Vote Unit

RVU_Accept_Init_1i : in Dboolean ;
RVU_Accept_Echo_1i : in Dboolean ;
RVU_Transfrm_Result_i : in ROBUS_Msg_Typ ;
RVU_Ready_1 : in Dboolean ;
RVU_Last_Msg_1i : in Dboolean ;

—— Output to other unit

IU_Init_o : out OK_Sync_Pls_2D_Vect_Typ ;
IU_Echo_o : out OK_Sync_Pls_2D_Vect_Typ ;
IU_Input_Msg_o : out OK_Msg_Vect_Typ ;
IU_Input_Strobe_o : out OK_Bool_Vect_Typ ;
IU_Ready_o : out boolean ;

IU_Receiving_o : out boolean ;

IU_PE_or_ACC_o : out PE_or_ ACC_Typ ;
IU_Source_Id_o : out Source_Id_Typ ;
IU_Last_Msg_o : out boolean ;

IU_Synd_o : out IU_Synd_Typ ;
IU_Immd_Synd_o : out IU_Imm_Synd_Typ ;
IU_Zero_Schedule_o : out boolean ;

IU_Invalid_Schedule_o : out boolean

4

end Input_Unit ;

Figure 11.13: VHDL entity declaration for the Input Unit

11.6. Input Diagnostics Unit

The main purpose of the IDU is to identify invalid inputs. The IDU combines the results of its own
error checks with the error syndromes from the Input Unit to detect invalid inputs. When the RPP is
unsynchronized and using asynchronous-monitoring communication during Clique Detection and Clique
Initialization modes, the IDU performs monitoring and error detection for each opposite kind node. The
monitoring functions include rate checks on the reception of ECHO messages during Local Diagnosis
Acquisition in the Clique Detection mode, and message sequence checks during Clique Detection and

135

Clique Initialization modes. After the RPP synchronizes to the clique, the IDU performs error detection
based on the content of received messages.

11.6.1. Block diagram

Figure 11.14 shows the block diagram for the IDU. The Controller is an 18-state Mealy machine.
Each input lane is processed separately. For asynchronous monitoring, the rate and sequence monitoring
results are combined with the IU reception error syndromes and Frame Synchronization protocol errors to
determine validity. The Rate Monitor includes a 9-state Mealy machine and a counter. The Sequence
Monitor includes a 16-state Mealy machine and a counter. For synchronized operations, validity is based
on content error checks and IU reception error syndromes.

I .
u IUE) IU Pipeline
IUSync Message ror One for each opposite ~ Control
Pulses Content Syndromes kind node A MCU
. | Command
I I 1
Reception Frame Rate Sequence Content
Error Sync Error Monitor Monitor Error
Syndromes Syndrome Detector @ Pp| Controller
(FSM)
>
\ Mux /
\ 4 \ 4 ; l
Sync Received Invalid Content Pipeline
Pulses Message Input Error — | Control

v

v

11.6.2. Interface

v

v

Figure 11.14: Block diagram for the Input Diagnostics Unit

v

Figure 11.15 is the VHDL entity declaration for the IDU. The inputs include the clock CLK_i, the

MCU command, and the IU outputs.
the received messages
IDU_PE_or_ACC o,

IDU_Echo_o;
IDU_Ready_o,

and

the pipeline control
IDU_Last_Msg o.

The IDU outputs include the sync pulses IDU_Init_o and
IDU_Input_Msg o; and
IDU_Source_Id_o,

signals
Signal

IDU_Invalid_Input_o specifies the valid inputs, and IDU_Synd_o is the content error syndromes.

136

entity Input_Diagnostics_Unit is
port (CLK_1i : in bit ;

—-— From Mode Control Unit

Node_Id_1i : in Node_Id_Typ ;
Node_Kind_1i : in Node_Kind_typ ;
MCU_Node_Reset_1i : in Dboolean ;
MCU_Command_ i : in MCU_Cmnd_Typ ;
MCU_Ready_1 : in Dboolean ;

—— From Input Unit

IU_Init_1 : in OK_Sync_Pls_2D_Vect_Typ ;
IU_Echo_1i : in OK_Sync_Pls_2D_Vect_Typ ;
IU_Input_Msg_i : in OK_Msg_Vect_Typ ;
IU_Input_Strobe_1i : in OK_Bool_Vect_Typ ;
IU_Ready_1 : in Dboolean ;

IU_Receiving_i : in Dboolean ;

IU_PE_or_ACC_1i : in PE_or_ ACC_Typ ;
IU_Source_Id_1i : in Source_Id_Typ ;
IU_Last_Msg_1i : in Dboolean ;

IU_Synd_1i : in IU_Synd_Typ ;
IU_Immd_Synd_1i : in IU_Imm_Synd_Typ ;

—— Output to other unit

IDU_Init_o : out OK_Sync_Pls_2D_Vect_Typ ;
IDU_Echo_o : out OK_Sync_Pls_2D_Vect_Typ ;
IDU_Input_Msg_o : out OK_Msg_Vect_Typ ;
IDU_Ready_o : out boolean ;

IDU_PE_or_ACC_o : out PE_or_ACC_Typ ;
IDU_Source_Id_o : out Source_Id_Typ ;
IDU_Last_Msg_o : out boolean ;
IDU_Invalid_TInput_o : out OK_Bool_Vect_Typ ;

IDU_Synd_o : out IDU_Synd_Typ
)

end Input_Diagnostics_Unit ;

Figure 11.15: VHDL entity declaration for the Input Diagnostics Unit

11.7. Route and Vote Unit

The Route and Vote Unit is where the main computation takes place. The Input Eligible Voters for
the dynamic voting functions are computed by the RVU using the Invalid Inputs computed by the IDU
and the Accusations and Convictions provided by the Node Diagnostics Unit. For the synchronization
protocols, the RVU computes Accept(INIT) and Accept(ECHO) functions. For the Schedule Update, PE
Broadcast, and Collective Diagnosis protocols the RVU computes exact-match majority word vote
functions (i.e., the unit of data is the full content of a message). For the PE Broadcast protocol, the RVU
also performs a routing function that selects an input to be forwarded to the output. For the Collective
Diagnosis and Accusation Exchange protocols, the RVU computes message-wide Boolean majority bit
vote functions (i.e., each bit location is voted independently). The RVU performs error checks for each
dynamic voting function, as well as for the Input Eligible Voters function.

137

11.7.1. Block diagram

Figure 11.16 shows the block diagram for the RVU. The Controller is a 24-state Mealy machine. The
Timer is used to measure the synchronization-reset delay for the synchronization protocols. The Input
Eligible Voters block computes the eligible voters (IEV) for all the dynamic voting functions. This
module also performs checks for the conditions of no-eligible-voters and invalid-initial-eligible-voters for
the Synchronization Capture and Initial Synchronization protocols, as stated in the RPP requirements.
The Accept functions use the widths of the sync pulses to check for no-majority conditions among its
IEVs and for determining disagreement with the result of the function. The Content Transformation
block performs transformations required by the protocols beyond the basic dynamic voting and routing
operations.

Acc & Conv Invalid Inputs IDU Pipeline MCU
(From NDU) (From IDU) Control Command

Input *

Messages INIT Sync ECHO Sync
(From IDU) > s Pulses Pulses
igible
* ® e Voters
l Controller
i + * A 4 ; IEV ; * + (FSM)
Word Router Bit Accept Accept o>
Voter Voter Function Function
| | | ' >
v v_ v | g
\ Mux /
Content — v l T +
Transformation |g—— Y) Sync_Reset
+ Syndromes v Accept(ECHO) v Timer (To MCU)
Selection Transformation Accept(INIT) RVU
Result Result Pipeline
Control

Figure 11.16: Block diagram for the Route and Vote Unit

11.7.2. Interface

Figure 11.17 shows the VHDL entity declaration for the RVU. The inputs from the MCU are sent
directly to the RVU controller. The IDU inputs are used as described above for the block diagram. The
NDU inputs include the accusations and convictions against the nodes of the same and opposite kinds.
The RVU outputs include synchronization events (RVU_Accept_Init_o, RVU_Accept_Init_o, and
RVU_Sync_Reset_o), content results (RVU_Transfrm_Result_o and RVU_Select_Result_o), pipeline
control outputs (RVU_Ready_o, RVU_PE_or_ACC_o, RVU_Source_Id_o, and RVU_Last_Msg o),
and the error syndromes (RVU_Synd_o). The RVU syndromes are disagreement with the result of
Accept(INIT), disagreement with the result of Accept(ECHO), disagreement with the results of the bit
vote, disagreement with the result of the word vote, no-majority for Accept(INIT), no-majority for
Accept(ECHO), no-majority for the word vote, no eligible voters, and invalid eligible voters.

138

entity Route_and_Vote_Unit is

port (

)

CLK_1

in

—-— From Mode Control Unit

Node_TId_i :
Node_Kind_1i
MCU_Node_Reset_1i
MCU_Command_ i
MCU_Ready_1

—— From Input Diagnostics Unit

IDU_Init_1i
IDU_Echo_i
IDU_Input_Msg_1i
IDU_Ready_1i
IDU_PE_or_ACC_1i
IDU_Source_Id_ i
IDU_Last_Msg_1i
IDU_Invalid_Input_i

in
in
in
in
in

in
in
in
in
in
in
in
in

bit ;

Node_Id_Typ ;
Node_Kind_typ ;
boolean ;
MCU_Cmnd_Typ ;
boolean ;

OK_Sync_Pls_2D_Vect_Typ ;
OK_Sync_Pls_2D_Vect_Typ ;
OK_Msg_Vect_Typ ;

boolean ;

PE_or_ACC_Typ ;
Source_Id_Typ ;

boolean ;
OK_Bool_Vect_Typ ;

—— From Node Diagnostics Unit

NDU_Acc_and_Conv_1i

—— Output to other units
RVU_Accept_Init_o
RVU_Accept_Echo_o
RVU_Sync_Reset_o
RVU_Transfrm_ Result_o
RVU_Ready_o
RVU_PE_or_ ACC_o
RVU_Source_Id_o
RVU_Last_Msg_o
RVU_Select_Result_o
RVU_Synd_o

4

end Route_and_Vote_Unit ;

in

out
out
out
out
out
out
out
out
out
out

Acc_and_Conv_Typ ;

boolean ;
boolean ;
boolean ;
ROBUS_Msg_Typ ;
boolean ;
PE_or_ACC_Typ ;
Source_Id_Typ ;
boolean ;
ROBUS_Msg_Typ ;
RVU_Synd_Typ

Figure 11.17: VHDL entity declaration for the Route and Vote Unit

11.8. Node Diagnostics Unit

11.8.1. Block diagram

139

The main purpose of the Node Diagnostics Unit is to diagnose all the nodes in the system using the
syndromes from the IU, IDU, and RVU. The diagnostics rules are described in detail in [Torres 05]. The
NDU generates suspicions and accusations against nodes of the same and opposite kinds. It also store the
convictions results computed during the execution of the Collective Diagnosis and Collective Diagnosis
acquisition protocols.

Figure 11.18 shows the block diagram for the NDU. The Controller is a 26-state Mealy machine. The
Suspicion Generators generates suspicions based on the syndromes of disagreement with the result of the

word vote and the bit vote. The Controller specifies when these syndromes are valid for the generation of
suspicions. The generated suspicions are stored in the Suspicions Matrix, a 2-dimensional Boolean array
with one row per node of the same kind and one column per node of the opposite kind. The accumulated
suspicions are reduced after the execution of the Accusation Exchange protocol by performing row-wise
and column-wise dynamic bit vote operations for every row and every column. The eligible voters are
based on the accusations and convictions held by the NDU at the time of the vote.

During asynchronous-monitoring, the IDU performs the diagnosis of opposite-kind nodes. At the end
of that communication mode, the diagnostics results are loaded directly from the IDU Invalid_Inputs
signal as the current opposite-kind accusations.

The Temporary Accusations Register is used during the execution of the Collective Diagnosis protocol
to hold the accusations for the previous diagnostic cycle and enable the accumulation of new accusations
for the next diagnostic cycle while the convictions are being computed.

RVU RVU IDU U IDU
Selection Result Syndromes Syndromes Syndromes Invalid_ Inputs
$ |
Suspicion
Generators
v v = YVYY \ 4
- - Suspicions]]))
Same-Kind Same-Kind Matrix Opposite-Kind Opposite-Kind
Convictions Accusation Accusation Convictions
Generators py Generators
Row-wise Column-wise MCU
Bit Voters Bit Voters Command
Same-Kind Opposite-Kind
[2 . 4
l > Eligible Voters Eligible Voters <¢
Controller
Same-Kind Opposite-Kind (FSM)
Accusation Accusation
Accumulator Accumulator
Temporary f
At
& Pipeline
v v Control
To RVU To RVU To RVU, To RVU
and SMU and SMU SMU and OU and SMU

Figure 11.18: Block diagram for the Node Diagnostics Unit

140

11.8.2. Interface

Figure 11.19 shows the VHDL entity declaration for the NDU. The inputs consist of the MCU
command, the IU syndromes with the relevant timing signals, the IDU syndromes and Invalid_Input
signal with the timing signals, and RVU syndromes and Selection Result output with the pipeline control

signals. The outputs include accusations and convictions as a record data type, and the accusation sent to
the Output Unit as a ROBUS Message.

entity Node_Diagnostics_Unit is
port (CLK_1i : in bit ;

—-— From Mode Control Unit

Node_Id_1i : in Node_Id_Typ ;
Node_Kind_1i : in Node_Kind_typ ;
MCU_Node_Reset_1i : in Dboolean ;
MCU_Command_ i : in MCU_Cmnd_Typ ;
MCU_Ready_1 : in Dboolean ;

—— From Input Unit

IU_Input_Strobe_1i : in OK_Bool_Vect_Typ ;
IU_Ready_1i : in Dboolean ;
IU_Receiving_1i : in Dboolean ;
IU_Synd_1i : in IU_Synd_Typ ;
IU_Immd_Synd_1i : in IU_Imm_Synd_Typ ;

—— From Input Diagnostics Unit

IDU_Ready_1i : in Dboolean ;
IDU_Invalid_TInput_i : in OK_Bool_Vect_Typ ;
IDU_Synd_1 : in IDU_Synd_Typ ;

—-— From Route and Vote Unit

RVU_Ready_1i : in Dboolean ;
RVU_PE_or_ACC_1i : in PE_or_ACC_Typ ;
RVU_Source_Id_i : in Source_Id_Typ ;
RVU_Last_Msg_1i : in Dboolean ;
RVU_Select_Result_i : in ROBUS_Msg_Typ ;
RVU_Synd_1i : in RVU_Synd_Typ ;

—— Output to other units

NDU_Acc_and_Conv_o : out Acc_and_Conv_Typ ;
NDU_Diag_Msg_o : out ROBUS_Msg_Typ

)

end Node_Diagnostics_Unit ;

Figure 11.19: VHDL entity declaration for the Node Diagnostics Unit

11.9. Status Monitoring Unit

The purpose of the SMU is to detect a local failure or a clique failure, and to detect when a clique is
not present on the bus. This assessment is done based on the accusations and convictions from the NDU,

141

and the protocol results from the RVU. The SMU also includes a timeout check for the Synchronization
Acquisition and Initial Synchronization protocols, as well as for the resynchronization interval after
synchronization is achieved.

11.9.1. Block diagram

Figure 11.20 shows the block diagram for the SMU. The Controller is a 23-state Mealy machine. The
Sync_Reset signal from the RVU is the timing reference for the timeout checks. The RVU syndromes,
including no-majority for Acept(INIT), no-majority for Accept(ECHO), no-majority for word vote, no
eligible voters, and invalid eligible voters, are monitored by the controller to detect protocols failures. In
additions, checks are performed on the RVU Selection Result output. These check include a comparison
of the message sent by a source BIU against the corresponding RVU result during the PE Broadcast
protocol, comparing the results of processes P2 and P4 of the Collective Diagnosis protocol, and checking
the results of the Collective Diagnosis protocol for all-convicted conditions or a conviction-against-local-
node result. The Status Monitoring block combines the NDU diagnosis, timeout checks, and protocol
failure indicators to detect failure conditions and the absence of a valid clique.

MCU RVU
Command Outputs
¢ Major Sync_Reset ¢
Mode Al > al
Controller
) Diagnostic (FSM) Pipeline ¢
Cycle I q « Control
Ly](E)rlll;lp;;l; > <« Syndromes ¢
Selection
Y Result «
Protocol ¢
Failure Protocol
Acc & Conv Nit)erlltili(s)r < <« Emor jq— PEMessage
(From NDU) Detectors (From PE_IU)
Timeout
Timer

v v

Failure No_Clique

NG J
Y

To MCU

Figure 11.20: Block diagram for the Status Monitoring Unit

142

11.9.2. Interface

Figure 11.21 shows the VHDL entity declaration for the SMU. Signal QU_Read_i from the Output
Unit is asserted when a PE message is read from the PE Input Unit (PE_IU).

entity Status_Monitoring_Unit is
port (CLK_1i : in bit ;

—-— From Mode Control Unit

Node_Id_1i : in Node_Id_Typ ;
Node_Kind_1i : in Node_Kind_typ ;
MCU_Node_Reset_1i : in Dboolean ;
MCU_Command_ i : in MCU_Cmnd_Typ ;
MCU_Ready_1 : in Dboolean ;

—-— From Route and Vote Unit

RVU_Sync_Reset_1 : in Dboolean ;
RVU_Ready_1i : in Dboolean ;
RVU_PE_or_ACC_1i : in PE_or_ ACC_Typ ;
RVU_Source_Id_ i : in Source_Id_Typ ;
RVU_Last_Msg_1i : in Dboolean ;
RVU_Select_Result_1i : in ROBUS_Msg_Typ ;
RVU_Synd_1i : in RVU_Synd_Typ ;

—— From Node Diagnostics Unit
NDU_Acc_and_Conv_1i : in Acc_and_Conv_Typ ;

—— From PE Input Unit
PEIU_Msg_1i : in ROBUS_Msg_Typ ;

—-— From Output Unit
OU_Read_1i : in Boolean ;

—— Output to other units
SMU_Failure_o : out boolean ;
SMU_No_Clique_o : out boolean

)

end Status_Monitoring_Unit ;

Figure 11.21: VHDL entity declaration for the Status Monitoring Unit

11.10. Output Unit

The Output Unit is responsible for sending messages triggered by the local time or RVU-computed
synchronization events. The messages are either generated internally (INIT and ECHO for
synchronization protocols, and INITIALIZATION for Initial Diagnosis), or read from the PE Input Unit,
the RVU, or the NDU.

143

11.10.1. Block diagram

Figure 11.22 shows the block diagram for the OU. OK stands for “Opposite Kind” and RM for
“ROBUS Message”. The Controller is a 26-state Mealy machine. The RVU transformation results are
buffered until it is time to send them. OU_Read indicates when the OU is reading a PE Message from the
PE_IU. The OU decides when to assert the Output Strobe signal based gn the protocol being executed
without considering the Major Mode or Diagnostic Cycle. It is the responsibility of the MCU to specify
when to enable the sending of messages.

MCU
RVU Command
Transformation
Result
L €4— RVU Accept(INIT)
RM(INITTALIZATION) —
€— RVU Accept(ECHO)
RM(INIT) — Buffer Controller | €~ RVU Pipeline Control
RM(ECHO) —
€4 Timer
RM(OK Accusations)
(From NDU) <« counter
PE Message
(From PE_IU) —» OU_Read
* (to PE_IU)

YV V V' vV A 4

\ Mux / Output L » Output
* Enable Strobe
Output +
Message

v

Figure 11.22: Block diagram for the Output Unit
11.10.2. Interface

Figure 11.23 shows the VHDL entity declaration for the OU. Signal ROBUS_Output_o is of type
record with field equal to Message and Strobe.

144

entity Output_Unit is
port (CLK_1i : in bit ;

—— From Mode Control Unit

Node_TId_i : in Node_Id_Typ ;
Node_Kind_1i : in Node_Kind_typ ;
MCU_Node_Reset_1i : in Dboolean ;
MCU_Command_ i : in MCU_Cmnd_Typ ;
MCU_Ready_1 : in Dboolean ;

—-— From Route and Vote Unit

RVU_Accept_Init_1i : in Boolean ;
RVU_Accept_Echo_1 : in Boolean ;
RVU_Transfrm_Result_i : in ROBUS_Msg_Typ ;
RVU_Ready_1i : in Boolean ;
RVU_Last_Msqg_1i : in Dboolean ;

—— From Node Diagnostice Unit
NDU_Diag_Msg_1i : in ROBUS_Msg_Typ ;

—-— Internal outputs
OU_Read_o : out Boolean ;

—-— From PE Input Unit
PEIU_Msg_1i : in ROBUS_Msg_Typ ;

—-— External/ROBUS outputs
ROBUS_Output_o : out ROBUS_Output_Typ
)

end Output_Unit ;

Figure 11.23: VHDL entity declaration for the Output Unit

11.11. PE Input Unit

The PE Input Unit (PE_IU) is the interface between the PE and the RPP Output Unit. The RPP is
designed with a FIFO abstraction for the PE input interface. The PE messages are presumed to be
available whenever the RPP decided to read a message. The PE is responsible for reporting to the RPP
when there is a problem such that a valid message is not available.

11.11.1. Block diagram
Figure 11.24 shows the block diagram for the PE_IU. The data from the PE is carried as the Payload

of a DATA-tagged ROBUS Message. If an error is signaled by the PE, then a PE_ERROR message is
used. The OU_Read signal is sent directly to the PE side of the interface.

145

PE Message
To the PE (Payload)

DATA
ROBUS
Message

RM(PE_ERROR)

v v

OU_Read \ Mux /4_ PE Message
(From OU) + Syndrome

Figure 11.24: Block Diagram for the PE Input Unit

11.11.2. Interface

Figure 11.25 shows the VHDL entity declaration for the PE_IU. The MCU command is not used.
PEIU_Msg_o is the PE message sent to the OU. PE_Input_i is a record with fields Message (the PE
payload) and Synd (asserted when a valid payload is not available). PEIU_Read_Out_o is connected
directly to OU_Read_i.

entity PE_Input_Unit is
port (CLK_1i : in bit ;

—-— From Mode Control Unit

Node_Id_1i : in Node_Id_Typ ;
Node_Kind_1i : in Node_Kind_typ ;
MCU_Node_Reset_1i : in Dboolean ;
MCU_Command_ i : in MCU_Cmnd_Typ ;
MCU_Ready_1 : in Dboolean ;

—-— From Output Unit
OU_Read_1i : in Dboolean ;

—-— Internal outputs
PEIU_Msg_o : out ROBUS_Msg_Typ ;

—-— External inputs from the PE
PE_Input_1i : in PE_Input_Typ ;

—— External outputs to the PE
PEIU_Read_Out_o : out Boolean
)

end PE_Input_Unit ;

Figure 11.25: VHDL entity declaration for the PE Input Unit

11.12. PE Output Unit

The PE Output Unit sends messages to the PE. The PE_OU messages include Collective Diagnosis

146

convictions, Schedule Update results, PE Broadcast results, and INIT and ECHO synchronization
messages. In addition, the PE_OU sends the assessment result for the current PE communication
schedule, the current major mode, and the node Id number.

11.12.1. Block diagram

Figure 11.26 shows the block diagram for the PE_OU. The Controller is a 13-state Mealy machine.
The timing of the Output Strobe signal is based on the timing of the MCU Command, RVU
Accept(INIT), RVU_Accept(ECHO), and RVU Pipeline Control signals. The Major Mode and Node Id
read from the MCU are used as payload field contents for ROBUS Messages sent to the PE. Other
ROBUS Messages generated within the PE_OU include VALID_SCHEDULE, INVALID_SCHEDULE,
ZERO_SCHEDULE, INIT, and ECHO SPECIAL-tagged ROBUS Messages. RVU Transformation
Results are sent to the PE without modification.

MCU
Command
I "
Node Id Major New Major
Mode Mode
+ ‘ Detector <€4—RVU Accept(INIT)
DATA SPECIAL Minor Controller |€— RVU Accept(ECHO)
II\Q/IOBUS ROBUS Mode <€—RVU Pipeline Control
essage Message
Schedule
> Status >
. Output
RVU Transformation Result Strobe
RM(INVALID_SCHEDULE) +
RM(VALID_SCHEDULE)
RM(ZERO_SCHEDULE)

RM(INIT)
RM(ECHO) 1
YVY
\ Mux /

v

Output
Message

v

Figure 11.26: Block Diagram for the PE Output Unit

11.12.2. Interface

Figure 11.27 shows the VHDL entity declaration for the PE Output Unit. Signal PE_Output_o is of
record type with fields Message and Strobe.

147

entity PE_Output_Unit is

port

)

(

CLK_1i : in

—— From Mode Control Unit

Node_Id_1i : in
Node_Kind_1i : in
MCU_Node_Reset_1i : in
MCU_Command_ i : in
MCU_Ready_1 : in

—-— From Route and Vote Unit

RVU_Accept_Init_1i : in
RVU_Accept_Echo_1i : in
RVU_Transfrm Result_i : in
RVU_Ready_1 : in
RVU_PE_or_ACC_1i : in
RVU_Source_Id_1i : in
RVU_Last_Msqg_1i : in

—-— External outputs
PE_Output_o : out

4

end PE_Output_Unit ;

bit ;

Node_Id_Typ ;
Node_Kind_typ
boolean ;
MCU_Cmnd_Typ ;
boolean ;

boolean ;
boolean ;
ROBUS_Msg_Typ
boolean ;
PE_or_ACC_Typ
Source_Id_Typ
boolean ;

PE_Output_Typ

4

Figure 11.27: VHDL entity declaration for the PE Output Unit

148

12. Behavioral parameters

This section presents the formulas for the behavioral parameters in the VHDL description of the RPP.
The parameters are grouped according to the relevant RPP unit .

12.1. Mode Control Unit (MCU)

12.1.1. Min_Cmd_DII

Min_Cmd_DII denotes the minimum allowed separation between MCU commands. The PE Output
Unit requires a minimum of 3 ticks between commands.

Min_Cmd_DII =3 (12.1)
The current design of the RPP imposes the following constraint.

Min_Cmd_DII =3 (12.2)

12.1.2. ST_Xtra_Dly

ST_Xtra_Dly denotes the extra delay required to meet the minimum-duration constraint for the Self-
Test mode. In addition to the self-test delay, the MCU consumes 2 ticks to command a node reset and set
the major mode variable to Self-Test.

ST_Xtra_Dly = Asrm - Min_Cmd_DII - 2 (12.3)

Note that for the current version of the MCU controller can cause the actual Self-Test delay may
exceed Agty by Min_Cmd_DII - 1 ticks. The current design of the RPP imposes the following

constraint.

ST_Xtra_Dly > 1 (12.4)

12.1.3. ID_Dly
ID_Dly denotes the delay in starting the Initial Diagnosis after entering the Clique Initialization mode.
ID_Dly = Aip pegin (12.5)
The current design of the RPP imposes the following constraint.

ID_Dly =2 1 (12.6)

149

12.14. LT_CD
LT_CD denotes the local time at which to begin the execution of the Collective Diagnosis protocol.
LT_CD =Tcep (12.7)
The current design of the RPP imposes the following constraint.

LT CD=>1 (12.8)

12.1.5. LT_SU
LT_SU denotes the local time at which to begin the execution of the Schedule Update protocol.
LT_SU =Tsy (12.9)
The current design of the RPP imposes the following constraint.

LT SU=4 (12.10)

12.1.6. LT_PE
LT_PE denotes the local time at which to begin the execution of the PE Communication protocols.
LT_PE =T (12.11)
The current design of the RPP imposes the following constraint.

LT PE>7 (12.12)

12.1.7. LT_SP

LT_SP denotes the local time at which to begin the execution of the Synchronization Preservation
protocol.

LT_SP="Tg (12.13)
The current design of the RPP imposes the following constraint.

LT _SP> 10 (12.14)

150

12.2. Schedule Processor

12.2.1. Max_Num_PE_Msg

Max_Num_PE_Msg denotes the maximum number of PE messages that can be processed during the
execution of the PE Communication protocols.

Max_Num_PE_Msg = Kpg schedlmax (12.15)
The current design of the RPP imposes the following constraint.

Max_Num_PE_Msg >0 (12.16)

12.2.2. Dflt Num_PE_Msg

Dflt Num_PE_Msg denotes the default number of messages per PE for the default schedule. The
value of this parameter is application-dependent. The current design of the RPP imposes the following
constraints.

Dflt Num_PE Msg >0 (12.17)

N*Dﬂt—Num—PE—MSg < KPE,schedlmax (12 1 8)

12.3. Input Unit (IU)

12.3.1. PD_Rdyl_Dly

PD_Rdy1_Dly denotes the expected duration of the first observation window during Local Diagnosis
Acquisition (a.k.a., Preliminary Diagnosis).

PD_Rdyl_Dly = App ow (12.19)
The current design of the RPP imposes the following constraint.

PD_Rdyl_Dly > 1 12. (20)

12.3.2. PD_Rdy2_Dly

PD_Rdy2_Dly denotes the expected duration of the second observation window during Preliminary
Diagnosis.

PD_Rdy2_Dly = App ow (12.21)

The current design of the RPP imposes the following constraint.

151

PD_Rdy2_Dly > 1 (12.22)

12.3.3. ID_Wnd_Dly

ID_Wnd_Dly denotes the delay to open the reception window in process P1 of the Initial Diagnosis
protocol. This delay is measured from the clock edge immediately following the issue of the command
by the MCU.

ID_Wnd_Dly = AID,PI,RCVWND -1 (1223)

The current design of the RPP imposes the following constraint.

ID_Wnd_Dly =20 (12.24)

12.3.4. ID_Wnd_Sz
IS_Wnd_Sz denotes the size of the reception window in process P1 of the Initial Diagnosis protocol.
ID_Wnd_Sz = Wp peskew (12.25)
The current design of the RPP imposes the following constraint.

ID_Wnd_Sz=>1 (12.26)

12.3.5. IS_Wnd_Dly

IS_Wnd_Dly denotes the delay to open the reception window for the Initial Synchronization protocol.
This delay is measured from the clock edge at which the reception window of the Initial Diagnosis
protocol closes to the clock edge at which the reception window of the Initial Synchronization protocol
opens.

IS_Wnd_Dly = Cippi + App1,c-enD + Als pegin + As pi.RevwND (12.27)
The current design of the RPP imposes the following constraint.

IS_Wnd_Dly > 1 (12.28)

12.3.6. SP_INIT Wnd_Dly(Node_Kind)

SP_INIT_Wnd_Dly denotes the delay to open the reception window for receiving INIT messages
during the execution of the Synchronization Preservation protocol. This delay is measured from the clock
edge immediately following the edge at which the MCU issues the command to the clock edge at which
the reception window opens.

152

12.3.6.1. RMU
The RMUs receive INIT messages in process P1.
SP_INIT_Wnd_DIly(RMU) = Bgppo + Rpp - Wegkew pre - 1 (12.29)
The current design of the RPP imposes the following constraint.

SP_INIT_Wnd_Dly(RMU) =0 (12.30)

12.3.6.2. BIU

The BIUs receive INIT messages in process P2.

SP_INIT_Wnd_Dly(BIU) = Bgsppg + Rsppop2 - Aspp2.rcvimax - 1 (12.31)

Note that the reception variables for process P2 are computed using Tpglps rcy in consideration of the
joining BIUs that synchronize using the Synchronization Capture protocol during the previous execution
of the Synchronization Preservation protocol (see Section 5.10.2).

The current design of the RPP imposes the following constraint.

SP_INIT_Wnd_Dly(BIU) =0 (12.32)

12.3.7. SP_INIT _Wnd_Sz(Node_Kind)

SP_INIT_Wnd_Sz denotes the size of the reception window for receiving INIT messages during the
execution of the Synchronization Preservation protocol.

12.3.7.1. RMU
For the RMUs in process P1:
SP_INIT_Wnd_Sz(RMU) = Wpew (12.33)
The current design of the RPP imposes the following constraint.

SP_INIT_Wnd_Sz(RMU) > 1 (12.34)

12.3.7.2. BIU
For the BIUs in process P2:
SP_INIT_Wnd_Sz(BIU) = 2Asp pa rcvlmax + 1 (12.35)

Note that the reception variables for process P2 are computed using Ttsp polp rcv in consideration of the

153

joining BIUs that synchronize using the Synchronization Capture protocol during the previous execution
of the Synchronization Preservation protocol (see Section 5.10.2).

The current design of the RPP imposes the following constraint.

SP_INIT_Wnd_Sz(BIU) > 1 (12.36)

12.3.8. SP_ECHO_Wnd_Dly(Node_Kind)
SP_ECHO_Wnd_Dly denotes the delay to open the reception window for receiving ECHO messages
during the execution of the Synchronization Preservation protocol. This delay is measured from the clock

edge immediately following the edge at which the Accept(INIT) output is asserted to the clock edge at
which the reception window opens.

12.3.8.1. RMU
The RMUs receive ECHO messages in process P3.
SP_ECHO_Wnd_DIly(RMU) = Rgpp; p3 - Asppsrcvimax - 1 (12.37)
The current design of the RPP imposes the following constraint.

SP_ECHO_Wnd_Dly(RMU) =0 (12.38)

12.3.8.2. BIU
The BIUs receive ECHO messages in process P4.
SP_ECHO_Wnd_DIly(BIU) = Rgpps-ps - Asppsrcvimax - 1 (12.39)
The current design of the RPP imposes the following constraint.

SP_ECHO_Wnd_DIy(BIU) > 0 (12.40)

12.3.9. SP_ECHO_Wnd_Sz(Node_Kind)

SP_ECHO_Wnd_Sz denotes the size of the reception window for receiving ECHO messages during
the execution of the Synchronization Preservation protocol.

12.3.9.1. RMU

For the RMUs in process P3:

SP_ECHO_Wnd_Sz(RMU) = 2Asp p3 rcvlmax + 1 (12.41)

154

The current design of the RPP imposes the following constraint.

SP_ECHO_Wnd_Sz(RMU) = 1

12.3.9.2. BIU

For the BIUs in process P4:
SP_ECHO_Wnd_SZ(BIU) = 2ASP,P4,RCV|max +1
The current design of the RPP imposes the following constraint.

SP_ECHO_Wnd_Sz(BIU) > 1

12.3.10. INIT_PIs_Dly(Node_Kind)

(12.42)

(12.43)

(12.44)

INIT_PIs_Dly denotes the delay from the clock edge at which an INIT message is received to the
clock edge at which the corresponding event is presented at the output of the Input Unit. These INIT
signals are generated by the Input Unit’s Sync Delay subunits, whose outputs are directly connected to the
outputs of the Input Unit. For proper operation, the INIT outputs should be asserted at least one tick after
the READY output is asserted during Synchronization Preservation. The READY output is asserted

SP_INIT_Wnd_Sz ticks after the opening of the reception window.

12.3.10.1. RMU
For the RMUs in process P1:

INIT_Pls_DIly(RMU) = SP_INIT_Wnd_Sz(RMU) + 1

The current design of the RPP imposes the following constraint.

INIT_Pls_DIly(RMU) = 1

12.3.10.2. BIU

For the BIUs in process P2:

INIT_Pls_Dly(BIU) = SP_INIT _Wnd_Sz(BIU) + 1

The current design of the RPP imposes the following constraint.

INIT_Pls_Dly(BIU) > 1

155

(12.45)

(12.46)

(12.47)

(12.48)

12.3.11. INIT_Skw(Node_ Kind)

INIT_Skw denotes the maximum valid observed skew between INIT messages from trustworthy
nodes during the Synchronization Preservation protocol.

12.3.11.1. RMU

For RMUs in process P1:
INIT_SkW(RMU) = HSP,PI,RCV (1249)

The current design of the RPP imposes the following constraint.

INIT_Skw(RMU) > 1 (12.50)
12.3.11.2. BIU

For BIUs in process P2:

INIT_Skw(BIU) = Ilspparcv (12.51)

The current design of the RPP imposes the following constraint.

INIT_Skw(BIU) = 1 (12.52)

12.3.12. ECHO_PIs_Dly(Node_Kind)

ECHO_PIs_Dly denotes the delay from the clock edge at which an ECHO message is received to the
clock edge at which the corresponding event is presented at the output of the Input Unit. These ECHO
signals are generated by the Input Unit’s Sync Delay subunits, whose outputs are directly connected to the
outputs out the Input Unit. For proper operation, the ECHO outputs should be asserted at least one tick
after the READY output is asserted during Synchronization Preservation. The READY output is asserted
SP_ECHO_Wnd_Sz ticks after the opening of the reception window.
12.3.12.1. RMU

For the RMUs in process P1:

ECHO_PIs_Dly(RMU) = SP_ECHO_Wnd_Sz(RMU) + 1 (12.53)

The current design of the RPP imposes the following constraint.

ECHO_PIs_DIly(RMU) = 1 (12.54)

156

12.3.12.2. BIU
For the BIUs in process P2:
ECHO_PIs_Dly(BIU) = SP_ECHO_Wnd_Sz(BIU) + 1 (12.55)
The current design of the RPP imposes the following constraint.

ECHO_PIs_Dly(BIU) = 1 (12.56)

12.3.13. ECHO_Skw(Node_Kind)
ECHO_Skw denotes the maximum valid observed skew between ECHO messages from trustworthy

nodes during the Synchronization Preservation, Initial Synchronization, and Synchronization Capture
protocols.

12.3.13.1. RMU

For RMUs in process P3 or P3C:
ECHO_Skw(RMU) = Igp p3 rcv (12.57)
The current design of the RPP imposes the following constraint.

ECHO_Skw(RMU) = 1 (12.58)

12.3.13.2. BIU
For BIUs in process P4 or P4C:
ECHO_Skw(BIU) = Ilgppsrcv (12.59)
The current design of the RPP imposes the following constraint.

ECHO_Skw(BIU) = 1 (12.60)

12.3.14. CD_Wnd1_Dly

CD_Wnd1_Dly denotes the delay to open the reception window for receiving messages in process P1
during the execution of Collective Diagnosis or Collective Diagnosis Acquisition. This delay is measured
from the clock edge immediately following the edge at which the MCU issues the command to the clock
edge at which the reception window opens.

CD_Wndl_Dly = ACD,PI,RCVWND -1 (1261)

The current design of the RPP imposes the following constraint.

157

CD_Wndl _Dly =20 (12.62)

12.3.15. CD_Wnd2_Dly

CD_Wnd2_Dly denotes the delay to open the reception window for receiving messages in processes
P2, P3, and P4 during the execution of Collective Diagnosis or Collective Diagnosis Acquisition. This
delay is measured from the clock edge at which the previous receive window is closed until the edge at
which the next window opens.

CD_Wnd2_Dly = ACD,PZ,RCVWND (1263)

The current design of the RPP imposes the following constraint.

CD_Wnd2 Dly =1 (12.64)

12.3.16. SU_P1_Wnd1_Dly(Node_Kind)
SU_P1_Wnd1_Dly denotes the delay to open the reception window for receiving the first set of
messages during the execution of the Schedule Update protocol. This delay is measured from the clock

edge immediately following the edge at which the MCU issues the command to the clock edge at which
the reception window opens.

12.3.16.1. RMU

For RMUs in process P1:
SU_P1_Wndl_DIly(RMU) = Agsypircvwap - 1 (12.65)

The current design of the RPP imposes the following constraint.

SU_P1_Wndl_Dly(RMU) =0 (12.66)
12.3.16.2. BIU

For BIUs in process P2:

SU_P1_Wndl1_DIly(BIU) = Asyp2.rcvwap - | (12.67)

The current design of the RPP imposes the following constraint.

SU_P1_Wndl_Dly(BIU) =0 (12.68)

12.3.17. SU_P2_Wnd1_Dly(Node_Kind)

SU_P2_Wnd1_Dly denotes the delay to open the reception window for receiving the second message

158

stream in the execution of the Schedule Update protocol. This delay is measured from the clock edge at
which the receive window is closed for the last message of the first stream to the clock edge at which the
receive window is opened for the first message of the second stream.

12.3.17.1. RMU
For RMUs in process P3:
SU_P2_Wnd1_Dly(RMU) = (TSU,PS,RCV,E,O - WDeskeW,pre) - (TSU,PI,RCV,E,N-I + WDCSkCW,pOSt) (1269)

The current design of the RPP imposes the following constraint.

SU_P2_Wnd1_DIy(RMU) > 1 (12.70)
12.3.17.2. BIU

For BIUs in process P4:

SU_Pz_Wndl_Dly(BIU) = (TSU,P4,RCV,E,0 - WDeskeW,pre) - (TSU,PZ,RCV,E,N-I + WDCSkCW,pOSt) (1271)

The current design of the RPP imposes the following constraint.

SU_P2_Wndl_Dly(BIU) = 1 (12.72)

12.3.18. SU_Wnd2_Dly
SU_Wnd2_Dly denotes the time gap between consecutive reception windows of a message stream,
and it applies to the first and second message streams during the execution of the Schedule Update
protocol. This delay is measured from the clock edge at which the reception window of a message ends
to the edge at which the next reception window of the stream begins. This delay applies equally to BIUs
and RMU s in processes P1, P2, P3, and P4. If the reception windows overlap, this variable is set to 0.
SU_Wnd2_Dly = ASU - WDeskeW, for ASU - WDeSkeW >0 (1273)
09 for ASU - wDeskew <0

The current design of the RPP imposes the following constraint.

SU_Wnd2_Dly =20 (12.74)

12.3.19. SU_DII
SU_DII denotes the data introduction interval for the streams of the Schedule Update protocol.

SU_DII = Agy (12.75)

159

The current design of the RPP imposes the following constraint.

SU_DII =1 (12.76)

12.3.20. SU_Max_Buff Cnt

SU_Max_Buff_Cnt denotes the maximum input buffer load for normal operation when the reception
windows overlap during the execution of the Schedule Update protocol. To specify the value of this
variable we leverage the timing analysis for point-to-point communication of message streams. The
current version of the RPP uses synchronous FIFOs as input buffers. Based on the analysis in Section 4
of this document:

SU_Max_Buff_Cnt =K - L(K-1)/(1 + po)” - (Apprevhbsmax + Aprocbegin) Asream + 1 (12.77)
For:
K =N,

APROC,begin = APP,RCVlabs»max + 1’ and

Astream = ASU’
then:
SU_Max_Buff_Cnt =N - L(N-D/(1 + po)’ - Wpesew/Asu + 1 (12.78)

The current design of the RPP imposes the following constraint.

SU_Max_Buff_Cnt =1 (12.79)

12.3.21. PE_Wnd1_Dly(Node_Kind)
PE_Wnd1_Dly denotes the delay to open the reception window for receiving the first message during
the execution of the PE Communication protocols. This delay is measured from the clock edge

immediately following the edge at which the MCU issues the command to the clock edge at which the
reception window opens.

12.3.21.1. RMU
For RMUs in process P1:
PE_Wnd1_DIly(RMU) = Apg pi RevWND.sched - 1 (12.80)
The current design of the RPP imposes the following constraint.

PE_Wndl_Dly(RMU) =0 (12.81)

160

12.3.21.2. BIU
For BIUs in process P2:
PE_Wnd1_DIly(BIU) = Apg p2 RcvWND.sched = 1 (12.82)
The current design of the RPP imposes the following constraint.

PE_Wnd1_Dly(BIU) =0 (12.83)

12.3.22. PE_Wnd2_Dly
PE_Wnd2_Dly denotes the time gap between consecutive reception windows of the message stream
during the execution of the PE Communication protocols. This delay is measured from the clock edge at
which the previous receive window is closed to the edge at which the next window opens. This delay
applies equally to BIUs and RMUs. If the windows overlap, this variable should be set to 0.
PE_Wndz_Dly = APE - WDeskewa fOI' APE,sched - WDeskew > 0 (1284)
07 for APE,sched - WDeskew <0

The current design of the RPP imposes the following constraint.

PE_Wnd2_Dly =20 (12.85)

12.3.23. PE_DII
PE_DII denotes the data introduction interval for the PE Communication protocol.
PE_DII = Apk sched (12.86)
The current design of the RPP imposes the following constraint.

PE DIl =1 (12.87)

12.3.24. PE_Max_Buff Cnt
PE_Max_Buff_Cnt denotes maximum input buffer load for normal operation when the reception
windows overlap during the execution of the PE Communication protocols. To specify the value of this

variable we leverage the timing analysis for point-to-point communication of message streams. The
current version of the RPP uses synchronous FIFOs as input buffers.

PE_Max_Buff_Cnt =K- L(K'l)/(l + P0)2 - (APP,RCVIabs—max + APROC,begin)//\stream + 1J (1288)
For:

K = KPE,schedlmax + 1’

161

ApROC begin = App RV labs-max + 1, and
Astream = APE,scheda
then:
PE_Max_Buff_Cnt = Kpg seheahnax - L(KpEscheahmax - /(1 + P0)? = Wpeskew/ ApE.sehea + 1 (12.89)
Since the schedule can be dynamically updated, the actual number of messages in the stream (denoted
generically by K) can vary from cycle to cycle. Here, we use the largest allowed stream during PE

Communication as the reference to compute PE_Max_Buff Cnt.

The value Kpg chedlmax + 1 includes the accusations message sent after the PE messages. (Note that this
assumes that the accusations message will be sent with the same DII as the rest of the stream.)

The current design of the RPP imposes the following constraint.

PE_Max_Buff Cnt>1 (12.90)

12.3.25. Syncns_Wnd_Sz
Syncns_Wnd_Sz denotes the synchronous reception window size for the time-driven protocols.
Syncns_Wnd_Sz = Wpegkew (12.91)
The current design of the RPP imposes the following constraint.

Syncns_Wnd_Sz > 1 (12.92)

12.3.26. Frm_Sync_Gap(Node_Kind)
Frm_Sync_Gap denotes the time between valid ECHO messages that a node must search for in order
to achieve frame synchronization during the execution of the Synchronization Acquisition protocol. This

time is equal to the bound on the observed relative skew of received ECHO messages from trustworthy
nodes.

12.3.26.1. RMU
For RMUs in process P3C:
Frm_Sync_Gap(RMU) = I1gp p3crev (12.93)
The current design of the RPP imposes the following constraint.

Frm_Sync_Gap(RMU) > 1 (12.94)

162

12.3.26.2. BIU
For BIUs in process P4C:
Frm_Sync_Gap(BIU) = Ilsp psc rev (12.95)
The current design of the RPP imposes the following constraint.

Frm_Sync_Gap(BIU) > 1 (12.96)
12.4. Input Diagnostics Unit (IDU)

12.4.1. PD_ECHO_Cntl_Lo

PD_ECHO_Cntl_Lo denotes the minimum number of ECHO messages that is expected from a node
of the opposite kind during the first observation phase of Preliminary Diagnosis (a.k.a., Local Diagnosis
Acquisition).

PD_ECHO_Cntl_Lo = (App.ow - D/[(1 + Po)Pmax]] (12.97)

The current design of the RPP imposes the following constraint.

PD_ECHO_Cntl_Lo =0 (12.98)

124.2. PD_ECHO_Cntl_Hi

PD_ECHO_Cntl_Hi denotes the maximum number of ECHO messages that is expected from a node
of the opposite kind during the first observation phase of Preliminary Diagnosis.

PD_ECHO_Cntl_Hi = (1 + po)(Arp.ow - 1)/pumind +1 (12.99)
The current design of the RPP imposes the following constraint.

PD_ECHO_Cntl_Hi=0 (12.100)

12.4.3. PD_ECHO_Cnt2_Lo

PD_ECHO_Cnt2_Lo denotes the minimum total number of ECHO messages that is expected from a
node of the opposite kind by the end of the second observation phase during Preliminary Diagnosis.

PD_ECHO_Cnt2_Lo = (2App.ow - D/[(1 + Po)Pmax] (12.101)
The current design of the RPP imposes the following constraint.

PD_ECHO Cnt2 Lo =0 (12.102)

163

12.4.4. PD_ECHO_Cnt2_Hi

PD_ECHO_Cnt2_Hi denotes the minimum total number of ECHO messages that is expected from a
node of the opposite kind by the end of the second observation phase during Preliminary Diagnosis.

PD_ECHO_Cnt2_Hi = (1 + po)2App.ow - 1)/Pminl +1 (12.103)
The current design of the RPP imposes the following constraint.

PD_ECHO_Cnt2_Hi >0 (12.104)
12.5. Route-and-Vote Unit (RVU)
12.5.1. INIT_Skw(Node_Kind)

INIT_Skw denotes the maximum valid observed skew between INIT messages from trustworthy
nodes during the Synchronization Preservation protocol. This parameter is also used in the Input Unit.

12.5.1.1. RMU
For RMUs in process P1:
INIT_Skw(RMU) = Igpps rev (12.105)

The current design of the RPP imposes the following constraint.

INIT_Skw(RMU) = 1 (12.106)
12.5.1.2. BIU

For BIUs in process P2:

INIT_Skw(BIU) = Ilspprrcv (12.107)

The current design of the RPP imposes the following constraint.

INIT_Skw(BIU) = 1 (12.108)

12.5.2. ECHO_Skw(Node_Kind)

ECHO_Skw denotes the maximum valid observed skew between ECHO messages from trustworthy
nodes during the Synchronization Preservation, Initial Synchronization, and Synchronization Capture
protocols. This parameter is also used in the Input Unit.

164

12.5.2.1. RMU

For RMUs in process P3 or P3C:

ECHO_SkW(RMU) = HSP,P3,RCV

The current design of the RPP imposes the following constraint.

ECHO_Skw(RMU) = 1

12.5.2.2. BIU

For BIUs in process P4 or P4C:

ECHO_Skw(BIU) = Ilsppsrcv

The current design of the RPP imposes the following constraint.

ECHO_Skw(BIU) = 1

12.5.3. SCIS_Sync_Rst_Dly(Node_Kind)

(12.109)

(12.110)

(12.111)

(12.112)

SCIS_Sync_Rst_Dly denotes the sync reset delay for the Synchronization Capture and Initial
Synchronization protocols. This delay is measured from the time an Accept(ECHO) output is asserted
until the Sync_Reset signal is asserted by the Route-and-Vote Unit. The Local Time is set to O at the next

clock edge.

12.5.3.1. RMU

For RMUs in process P3 or P3C:

SCIS_Sync_Rst_DIy(RMU) = Hy; - 1

The current design of the RPP imposes the following constraint.

SCIS_Sync_Rst_Dly(RMU) > 1

12.5.3.2. BIU

For BIUs in process P4 or P4C:

SCIS_Sync_Rst_DIly(BIU) = Hp, - 1

The current design of the RPP imposes the following constraint.

165

(12.113)

(12.114)

(12.115)

SCIS_Sync_Rst_Dly(BIU) = 1 (12.116)

12.5.4. SP_Sync_Rst_Dly(Node_Kind)
SCIS_Sync_Rst_Dly denotes the sync reset delay for the Synchronization Preservation protocol. This

delay is measured from the time an Accept output is asserted until the Sync_Reset signal is asserted by
the Route-and-Vote Unit. The Local Time is set to O at the next clock edge.

12.5.4.1. RMU

For Synchronization Preservation, the RMUSs synchronize their Local Time with respect to the output
of Accept(ECHO) in process P3 or P3C.

SP_Sync_Rst_Dly(RMU) = Hp; - 1 (12.117)
The current design of the RPP imposes the following constraint.

SP_Sync_Rst_DIy(RMU) > 1 (12.118)

12.5.4.2. BIU

For Synchronization Preservation, the RMUs synchronize their Local Time with respect to the output
of Accept(INIT) in process P2.

SP_Sync_Rst_DIly(BIU) = Hp, - 1 (12.119)
The current design of the RPP imposes the following constraint.

SP_Sync_Rst_Dly(BIU) = 1 (12.120)

12.6. Status Monitoring Unit (SMU)

12.6.1. SA_Timeout

SA_Timeout denotes the timeout delay for the Synchronization Acquisition sequence, which includes
the Frame Synchronization and Synchronization Capture protocols.

SA_Timeout = Agplax (12.121)
The current design of the RPP imposes the following constraint.

SA_Timeout > 1 (12.122)

166

12.6.2. IS_Timeout
IS_Timeout denotes the timeout delay for the Initial Synchronization protocol. For the current version
of the ROBUS protocol processor, this is measured from the clock edge at which the Computation
Process outputs the result for Initial Diagnosis to the synchronization reset during Initial Synchronization.
IS_Timeout = AID,PI,C»END + AIS,begin + AIS'max (12 123)

The current design of the RPP imposes the following constraint.

IS_Timeout > 1 (12.124)

12.6.3. SP_Timeout
SP_Timeout denotes the timeout delay for the resynchronization interval.
SP_Timeout = P (12.125)
The current design of the RPP imposes the following constraint.

SP_Timeout > 1 (12.126)

12.7. Output Unit (OU)

To determine the parameter values for the Output Unit, we must keep under consideration that there is
a one-tick delay from the strobe generated by the OU controller to the strobe sent to the Communication
Module.

12.7.1. ID_Snd_Dly

ID_Snd_Dly denotes the send delay for Initial Diagnosis. This delay is measured from the clock edge
at which the MCU issues the command to one tick before the message is sent.

ID_Snd_Dly = Sippo- 1 (12.127)
The current design of the RPP imposes the following constraint.

ID_Snd_Dly =20 (12.128)

12.7.2. IS_INIT_Snd_Dly(Node_Kind)

IS_INIT_Snd_Dly denotes the send delay for the INIT message during Initial Synchronization.

167

12.7.2.1. RMU

For RMUs in process P1, this delay is measured from the time the output of Accept(INIT) is asserted
to one tick before the OU controller asserts its strobe.

IS_INIT_Snd_DIly(RMU) = Bp, - 1 (12.129)
The current design of the RPP imposes the following constraint.

IS_INIT_Snd_Dly(RMU) = 0 (12.130)

12.7.2.2. BIU

For BIUs in process PO, this delay is measured from the clock edge at which the controller generates
the strobe for the Initial Diagnosis message to the clock edge at which the controller generates the strobe
for the INIT message.

IS_INIT_Snd_DIly(BIU) = (Tisposnp - 1) - (Tioposnp - 1) (12.131)

= Rpp + Wip peskew,post + Cio,p1 + A p1,cEND + Ars begin + Bis po (12.132)

The current design of the RPP imposes the following constraint.

IS_INIT_Snd_Dly(BIU) = 1 (12.133)

12.7.3. SP_INIT_Snd_Dly(Node_Kind)
SP_INIT_Snd_Dly denotes the send delay for the INIT messages during the execution of the

Synchronization Preservation protocol.

12.7.3.1. RMU

For RMUs in process P1, this delay is measured from the time the Accept(INIT) is asserted to one tick
before the message is sent.

SP_INIT_Snd_DIly(RMU) = By, - 1 (12.134)
The current design of the RPP imposes the following constraint.

SP_INIT_Snd_DIy(RMU) > 0 (12.135)
12.7.3.2. BIU

For BIUs in process PO, this delay is measured from the time at which the MCU issues the command
to one tick before the time at which the INIT message is sent.

168

SP_INIT_Snd_Dly(BIU) = Bsppo - 1 (12.136)
The current design of the RPP imposes the following constraint.

SP_INIT_Snd_Dly(BIU) = 0 (12.137)

12.7.4. ECHO_Snd_Dly(Node_Kind)

ECHO_Snd_Dly denotes the send delay for the ECHO messages during the execution of the
synchronization protocols.

12.7.4.1. RMU

For RMUs in process P3, this delay is measured from the time the output of Accept(ECHO) is asserted
to one tick before the message is sent.

ECHO_Snd_Dly(RMU) = Bps - 1 (12.138)
The current design of the RPP imposes the following constraint.

ECHO_Snd_Dly(RMU) =0 (12.139)

12.7.4.2. BIU

For BIUs in process P2, this delay is measured from the time the output of Accept(INIT) is asserted to
one tick before the time at which the ECHO message is sent.

ECHO_Snd_Dly(BIU) = Bp, - 1 (12.140)
The current design of the RPP imposes the following constraint.

ECHO_Snd_DIy(BIU) > 0 (12.141)

12.7.5. CD_Snd1_Dly

CD_Snd1_Dly denotes the send delay for the first message during the execution of Collective
Diagnosis and Collective Diagnosis Acquisition. This delay is measured from the clock edge at which the
MCU issues the command to one tick before the clock edge at which the message is sent.

CD_Snd1_Dly = Scppo - 1 (12.142)

The current design of the RPP imposes the following constraint.

CD_Snd1_Dly = 1 (12.143)

169

12.7.6. CD_Snd2_Dly
CD_Snd2_Dly denotes the send delay for the second, third, and fourth messages during the execution
of Collective Diagnosis and Collective Diagnosis Acquisition. This delay is measured from the time the
controller generates the strobe for a message to one tick before the next message is to be sent.
CD_Snd2_Dly = (Teppisno - 1) - (Tepposso - 1)
= Rpp + Weskew,post + Ceppi + Scp.p2 (12.144)

The current design of the RPP imposes the following constraint.

CD_Snd2 Dly =1 (12.145)

12.7.7. SU_P1_Snd1_Dly(Node_Kind)
SU_P1_Snd1_Dly denotes the send delay for the first message of the first pass in the Schedule Update

protocol. This delay is measured from the clock edge at which the MCU command is issued to one tick
before the clock edge at which the message is sent.

12.7.7.1. RMU
For RMUs in process P1:
SU_Pl_Sndl_Dly(RMU) = TSU,PI,SND,O - TSU -1 (12146)

The current design of the RPP imposes the following constraint.

SU_P1_Sndl_DIly(RMU) =1 (12.147)
12.7.7.2. BIU

For BIUs in process PO:

SU_P1_Snd1_DIly(BIU) = Sgypo - 1 (12.148)

The current design of the RPP imposes the following constraint.

SU_P1_Snd1_DIy(BIU) > 0 (12.149)

12.7.8. SU_P2_Sndl_Dly(Node_Kind)

SU_P2_Snd1_Dly denotes the send delay for the first message of the second stream in the Schedule
Update protocol. This delay is measured from the clock edge at which the controller generates the strobe
for the last message of the first stream to the clock edge at which the controller generates the strobe for
the first message of the second stream.

170

For the current design of the ROBUS protocol processor, the Output Unit includes a buffer to store the
messages of the second stream. At a minimum, this buffer introduces a one-tick delay to the processing
of each message. This extra delay can be assigned to either the computation delays for processes P2 and
P3 (i.e., Csupr and Cgyps) or the minimum send delay for processes P2 and P3 (i.e., Ssupslmn and

SSU,P3 Imin) .

12.7.8.1. RMU
For RMUs in process P3:
SU_P2_Snd1_DIly(RMU) = Agy strEam.po-p2lRMU (12.150)

The current design of the RPP imposes the following constraint.

SU_P2_Snd1_DIly(RMU) > 1 (12.151)
12.7.8.2. BIU

For BIUs in process P2:

SU_P2_Snd1_Dly(BIU) = ASU,STREAM,PO—PZ'BIU (12 152)

The current design of the RPP imposes the following constraint.

SU_P2_Sndl_DIly(BIU) = 1 (12.153)

12.7.9. SU_DII

SU_DII denotes the data introduction interval for the Schedule Update protocol. This is the same
parameter used in the Input Unit. This parameters is also used in the Input Unit.

SU_DII = Agy (12.154)
The current design of the RPP imposes the following constraint.

SU_DII =1 (12.155)

12.7.10. PE_Snd1_Dly(Node_Kind)
PE_Snd1_Dly denotes the send delay for the first message in PE Communication. This delay is

measured from the clock edge at which the command is issued to one tick before the clock edge at which
the message is sent.

171

12.7.10.1. RMU
For RMUs in process P1:
PE_Snd1_DIly(RMU) = Tsyp1.snp.sched.0 - TpE - 1 (12.156)

The current design of the RPP imposes the following constraint.

PE_Sndl_Dly(RMU) = 1 (12.157)
12.7.10.2. BIU

For BIUs in process PO:

PE_Sndl_Dly(BIU) = SPE,PO,sched -1 (12158)

The current design of the RPP imposes the following constraint.

PE_Sndl_Dly(BIU) = 1 (12.159)

12.7.11. PE_DII

PE_DII denotes the data introduction interval for PE Communication. This parameter is also used in
the Input Unit.

PE_DII = Apk sched (12.160)
The current design of the RPP imposes the following constraint.

PE DIl =1 (12.161)

172

13. Structural parameters
This section presents the formulas for the structural parameters in the VHDL description of the RPP.

The parameters are grouped according to the corresponding RPP unit. Interface-level structural
parameters are also defined.

13.1. Interface-level structural parameters

13.1.1. N

N denotes the number of BIUs in the system. The RPP can operate in a system with one or more
BIUs.

N>1 (13.1)

13.1.2. M

M denotes the number of RMUs in the system. The RPP can operate in a system with one or more
RMUs.

M> 1 (13.2)

13.1.3. Num_Lnk_Synd

Num_Lnk_Synd (= L;s) denotes the number of syndrome inputs provided by the Communication
Module for each receiver port. The current description of the RPP assumes that there is at least one link
syndrome for each input port.

Num_Lnk_Synd > 1 (13.3)

For an implementation that does not have link syndromes, Num_Lnk_Synd should be set to one and
then the input-syndrome signals should be set to the de-asserted value.

13.1.4. Payload_Width

Payload_Width (= Lpr) denotes the width of the Payload field for the ROBUS messages. This width
must be large enough to satisfy for the following constraints: fit the Payload width requirement for PE
messages; fit the width required to send Collective Diagnosis messages; fit the width required for the
BIUs to send their Node_Id to the PEs; fit Max_Num_PE_Msg expressed in binary code; and fit a
different binary value for each SPECIAL ROBUS message.

Let Max_PE_Payload_Width denote the Payload width requirement for PE messages. The width
requirement for Collective Diagnosis messages is max(N, M). The width required for BIU node Ids is
rlogz(N)—|. (Note that N > rlogz(N)—L) The minimum width requirement to fit the maximum number of PE

173

messages is rlogz(Max_Num_PE_Msg)—L We would like Max_Payload to be greater then or equal to
Max_Num_PE_Msg in order to be able to allocate all the available bandwidth to a single PE.

Let Num_Special_Msg denote the number of SPECIAL ROBUS messages defined. The minimum
width required to assign a different binary value to each SPECIAL message is [log,(Num_Special_Msg) |.
Then:

Payload_Width > max(Max_PE_Payload_Width, N, M,

[log>(Max_Num_PE_Msg + 1) |, [logo(Num_Special_Msg) |) (13.4)

13.1.5. Max_Payload
Max_Payload denotes the maximum value of the Payload field in binary code.

Max_Payload = 2P4'ox¢-Width _ 1 (13.5)

13.2. Mode Control Unit (MCU)

13.2.1. Max_Diag Cyc

Max_Diag_Cyc denotes the maximum value of the Diagnostic Cycle counter. For the current version
of the ROBUS protocols, a node in Clique Join mode goes through two Diagnostic Cycles before being
allowed to join a clique. The Diagnostic Cycle counter counts up starting from 0. The value of this

parameter must satisfy the following constraint.

Max_Diag_Cyc = 1 (13.6)

13.2.2. Max_ MCU_LT

Max_MCU_LT denotes the maximum value of the Local Time counter. The Local Time counter must
be able to count at least up to the maximum duration of a resynchronization cycle.

Max_MCU_LT > P (13.7)

13.2.3. Max MCU_Tmr

Max_MCU_Tmr denotes the maximum value of the general-purpose timer in the MCU. The
maximum count must be greater than or equal to the maximum loaded value.

Max_MCU_Tmr = max(Min_Cmd_DII, ST_Xtra_Dly, ID_Dly) (13.8)

174

13.3. Schedule Processor

13.3.1. Max_PE_Msg_Cnt

Max_PE_Msg_Cnt denotes the maximum value of the counter for the total number of scheduled PE
messages. For this counter, we want to prevent an overflow condition, which could cause a missed
detection of an excessive number of scheduled messages.

Since the error detector has a latching output, we choose Max_PE_Msg_Cnt to be greater than or
equal to Max_Payload. This ensures that the counter cannot overflow at the same time that its count

exceeds Max_Num_PE_Msg.

Max_PE_Msg_Cnt > 2*Max_Payload (13.9)

13.3.2. Sched_FIFO_Depth

Sched_FIFO_Depth denotes the depth of the schedule memory. Since a schedule consists of N
messages, the FIFO must be at least N deep.

Sched_FIFO_Depth > N (13.10)

13.4. Input Unit (IU)

13.4.1. Input_FIFO_Depth

Input_FIFO_Depth denotes the depth of the input FIFO at each input port. This buffer must be large
enough to hold at least one message more than the maximum loads for the Schedule Update and PE
Communication protocols. The extra message is required to ensure that if an overload occurs, then the
error is recorded in the buffer at least once.

Input_FIFO_Depth > max(SU_Max_Buff Cnt, PE_Max_Buff Cnt) + 1 (13.11)

13.4.2. Max_Frm_Sync_Tmr

Max_Frm_Sync_Tmr denotes the maximum value of the timer in the Frame Synchronizer. This timer
is used to measure the time between ECHO messages.

Max_Frm_Sync_Tmr 2 max(Frm_Sync_Gap(RMU), Frm_Sync_Gap(BIU)) (13.12)

13.4.3. Max_Sync_Dly_Tmr

Max_Sync_Dly_Tmr denotes the maximum value for the timers in the INIT and ECHO Delay units.
The same structural constraint is used since the same component is instantiated for processing INITs and
ECHOs. The same timer is used to implement the pulse delay and the pulse width.

175

Max_Sync_Dly_Tmr > max(INIT_Pls_DIly(RMU), INIT_PIs_Dly(BIU),
ECHO_PIs_Dly(RMU), ECHO_Pls_Dly(BIU),
INIT_Skw(RMU) + 1, INIT_Skw(BIU) + 1,

ECHO_Skw(RMU) + 1, ECHO_Skw(BIU) + 1) (13.13)

13.4.4. Max IU_Cntrlr_Tmr

Max_IU_Cntrlr_Tmr denotes the maximum value for the general-purpose timer in the IU controller.
This timer is used to control the timing of the reception windows and the Ready signal.

Max_IU_Cntrlr_Tmr > max(PD_Rdy1_Dly, PD_Rdy2_Dly, ID_Wnd_Dly,
ID_Wnd_Sz, IS_Wnd_Dly,
SP_INIT_Wnd_Dly(RMU), SP_INIT_Wnd_Dly(BIU),
SP_INIT_Wnd_Sz(RMU), SP_INIT_Wnd_Sz(BIU),
SP_ECHO_Wnd_DIly(RMU), SP_ECHO_Wnd_Dly(BIU),
SP_ECHO_Wnd_Sz(RMU), SP_ECHO_Wnd_Sz(BIU),
CD_Wndl1_Dly, CD_Wnd2_Dly,
SU_P1_Wndl_Dly(RMU), SU_P1_Wnd1_DIly(BIU),
SU_P2_Wnd1_Dly(RMU), SU_P2_Wnd1_DIly(BIU),
SU_Wnd2_Dly, SU_DII,
PE_Wnd1_DIly(RMU), PE_Wnd1_Dly(BIU),

PE_Wnd2_Dly, PE_DII, Syncns_Wnd_Sz) (13.14)

13.4.5. Max_IU_ Cntrlr_Cntr

Max_IU_Chntrlr_Cntr denotes the maximum value of the general-purpose counter in the IU controller.
This counter is used to count the messages in a stream during the Schedule Update protocol.

Max_IU_Cntrlr_Cntr > N (13.15)

176

13.5. Input Diagnostics Unit (IDU)

13.5.1. Max_Rate_Mon_Cntr

Max_Rate_Mon_Chntr denotes the maximum value of the Rate Monitor counter. This counter is used
to count the number of received ECHO messages during both Preliminary Diagnosis windows. The
maximum value of the counter must be greater than or equal to the maximum number of expected
messages. The counter has an overflow output to detect the arrival of more ECHO messages than its

capacity.

Max_Rate_Mon_Cntr > PE_ECHO_Cnt2_Hi (13.16)

13.5.2. Max_Seq_Mon_Cntr
Max_Seq_Mon_Cntr denotes the maximum value of the Sequence Monitor counter. This counter is
used to count the actual number of received messages out of the total number of expected messages

during each of the Collective Diagnosis and Schedule Update protocols.

Max_Seq_Mon_Chntr > max(4, N) (13.17)

13.6. Route-and-Vote Unit (RVU)

13.6.1. Max_RVU_Acpt_Tmr

Max_RVU_Acpt_Tmr denotes the maximum value of the timer in the Accept function module. This
module is instantiated for the Accept(INIT) and Accept(ECHO) functions. The timer is used to check the
relative skew of the received messages with respect to the selected message.

Max_RVU_Acpt_Tmr = max(INIT_Skw(RMU), INIT_Skw(BIU),

ECHO_Skw(RMU), ECHO_Skw(BIU)) (13.18)

13.6.2. Max_RVU_Cntrlr_Tmr

Max_RVU_Cntrlr_Tmr denotes the maximum value of the timer used by the RVU controller. This
timer is used to implement the synchronization-reset delays for Synchronization Capture, Initial
Synchronization, and Synchronization Preservation.

Max_RVU_Cntrlr_Tmr = max(SCIS_Sync_Rst_DIly(RMU), SCIS_Sync_Rst_Dly(BIU),

SP_Sync_Rst_Dly(RMU), SP_Sync_Rst_DIly(BIU)) (13.19)

177

13.7. Status Monitoring Unit (SMU)

13.7.1. Max_Timeout
Max_Timeout denotes the maximum value of the timeout timer.

Max_Timeout > max(SA_Timeout, IS_Timeout, SP_Timeout) (13.20)

13.7.2. Sent_FIFO_Depth

Sent_FIFO_Depth denotes the depth of the SMU FIFO. This FIFO is used to buffer sent PE messages
by a source BIU until the corresponding result of the PE Broadcast protocol is computed.

Sent_FIFO_Depth >

|-[2(RPP + Woeskew.post) + SpEp1sched T (CpEp1,sched + CpEp2.sched) + 1]/APEJ +1 (13.21)
13.8. Output Unit (OU)

13.8.1. Output_FIFO_Depth

Output_FIFO_Depth denotes the depth of the FIFO buffer in the Output Unit. This FIFO is used to
buffer RVU messages during Collective Diagnosis processes P1, P2, and P3; for Schedule Update
processes P1, P2, and P3; and during process P1 of PE Broadcast and Accusation Exchange. For the
Schedule Update protocol, this buffer must hold at most all the messages in a stream: N. For Collective
Diagnosis, the buffer must hold at most 1 message. For PE Communication, the load is determined by the
DII and the delay between the time when the RVU outputs the message and the time when the OU reads
the message.

OUtPUt_FIFO_Depth 2 max (N’ Ceil((SPE,Pl,sched - 1)/APE,sched)’ Ceil((SPE,Pl,acc - 1)/APE,sched)) (1322)

13.8.2. Max_OU_Cntrlr_Tmr

Max_OU_Chntrlr_Tmr denotes the maximum value of the timer in the OU controller. This timer is
used to control the timing of output messages.

Max_OU_Chntrlr_Tmr > max(ID_Snd_Dly, IS_INIT_Snd_DIy(RMU), IS_INIT_Snd_Dly(BIU),
SP_INIT_Snd_DIy(RMU), SP_INIT_Snd_Dly(BIU),
ECHO_Snd_DIly(RMU), ECHO_Snd_Dly(BIU),
CD_Snd1_Dly, CD_Snd2_Dly,

SU_P1_Snd1_DIly(RMU), SU_P1_Snd1_Dly(BIU),

178

SU_P2_Sndl_Dly(RMU), SU_P2_Snd1_Dly(BIU), SU_DII,

PE_Snd1_Dly(RMU), PE_Snd1_Dly(BIU), PE_DII) (13.23)

13.8.3. Max_OU_Cntrlr_Cntr

Max_OU_Cntrl_Cntr denotes the maximum value of the counter in the OU controller. This counter is
used to count the number of messages in a stream during the Schedule Update protocol.

Max_OU_Chntrlr_Cntr > N (13.24)

179

14. Specifying a particular solution

This section lists the variables of the generic model that must be specified in order to compute the RPP
behavioral and structural parameters for a particular implementation.

14.1. Platform Specifications

Item Variable Units Type Value RPP
Number Range Constraint
1 N Unitless Integer >1 =1
2 M Unitless Integer >1 >1
3 fo Hertz Real >0 Arbitrary
4 Po Unitless Real >0 Arbitrary
5 dpp, Nominal clock ticks Real >0 Arbitrary
6 dpp Nominal clock ticks Real >0 Arbitrary
7 Acomm Local clock ticks Integer >1 Arbitrary
8 dpor Seconds Real >0 Arbitrary
9 Lig Unitless Integer >0 >1
10 Lpglpg Bits Integer >1 >1
Notes:

e Items 1 and 2: Number of BIUs and RMUs, respectively.

e Item 3: The generic model imposes no significant restrictions on the values of fy,. The valid value range for f; is
determined by the implementation after place-and-route for the target technology.

e Item 4: p, = 0 corresponds to a perfect clock oscillator with no drift with respect to real time.

e Items 5 and 6: For some systems, dpp; and dpp, could be negligibly small, and thus the analysis should handle
the case in which they are set to 0.

e Item 8: Opor could be negligibly small for some systems.

e Item 9: Number of syndromes for each receiver.

e Item 10: Required Payload field width for PE messages.

14.2. Environmental Specifications

Item Variable Units Type Value RPP
Number Range Constraint
1 Orcp Nominal clock ticks Real 20 Arbitrary
Notes:

e Item 1: Ogcp could be negligibly small for some systems.

14.3. Operational-Delay Constraints

Item Variable Units Type Value RPP
Number Range Constraint
1 AIb begin Local clock ticks Integer >0 >2
2 S1b.polmin Local clock ticks Integer >0 =1

181

Item Variable Units Type Value RPP
Number Range Constraint
3 AID Pl RCYWNDmin Local clock ticks Integer >0 =1
4 C.ri Local clock ticks Integer >0 =1
5 AID P1.C.END Local clock ticks Integer >0 =2
6 ArS begin Local clock ticks Integer >0 >0
7 Bis polmin Local clock ticks Integer >0 =0
8 Ais pLRCVWNDmin Local clock ticks Integer >0 =0
9 Bsp polimin Local clock ticks Integer >0 =1
10 Bpilnin Local clock ticks Integer >0 =3
11 Bpolmin Local clock ticks Integer >0 =3
12 Bpslmin Local clock ticks Integer >0 =3
13 Agp p1 RCVWNDhmin Local clock ticks Integer >0 =1
14 Asp P2 RCVWND hmin Local clock ticks Integer >0 =1
15 Asp p3 RCVWNDmin Local clock ticks Integer >0 =1
16 Agp pa RevWNDmin Local clock ticks Integer >0 =1
17 Cspri Local clock ticks Integer >0 >4
18 Csppo Local clock ticks Integer >0 >4
19 Cspp3 Local clock ticks Integer >0 >4
20 Cspps Local clock ticks Integer >0 >4
21 Scp,polmin Local clock ticks Integer >0 =2
22 Acp.p1LRCVWNDImin Local clock ticks Integer >0 =1
23 Ceppi Local clock ticks Integer >0 =1
24 Scp.pilmin Local clock ticks Integer >0 =3
25 Acp p2 RCVWNDmin Local clock ticks Integer >0 =1
26 Ceppo Local clock ticks Integer >0 =1
27 Scp.p2lmin Local clock ticks Integer >0 =3
28 Acp.p3. RCVWND Imin Local clock ticks Integer >0 =1
29 Ccpps Local clock ticks Integer >0 =1
30 Scp.p3lmin Local clock ticks Integer >0 =3
31 Acp.parevwiNDlmin Local clock ticks Integer >0 =1
32 Cep.pa Local clock ticks Integer >0 =1
33 ACD.pa.C-END Local clock ticks Integer >0 =3
34 Asy.SND-MODE Local clock ticks Integer >0 =1
35 Ssu.polmin Local clock ticks Integer >0 =1
36 AsU P1 RCVWNDImin Local clock ticks Integer >0 =1
37 Csupi Local clock ticks Integer >0 =1
38 Ssu.pilmin Local clock ticks Integer >0 =3
39 Csupm Local clock ticks Integer >0 =2
40 Ssu.p2lmin Local clock ticks Integer >0 =3
41 Csups Local clock ticks Integer >0 =2
42 Ssu.p3lmin Local clock ticks Integer >0 =3
43 Csu.ps Local clock ticks Integer >0 =1
44 AsU P4.C-END Local clock ticks Integer >0 =5
45 ApE SND-SA Local clock ticks Integer >0 =2
46 SpE.Po.schedlmin Local clock ticks Integer >0 =2
47 ApE p1 RCYWND.schedmin Local clock ticks Integer >0 =1
48 CpEP1 sched Local clock ticks Integer >0 =1
49 SPE.P1 schedlmin Local clock ticks Integer >0 =4
50 CpE p2.sched Local clock ticks Integer >0 =1

182

Item Variable Units Type Value RPP
Number Range Constraint
51 APE Poace_teady Local clock ticks Integer >1 =1
52 SPE.Po.accmin Local clock ticks Integer >0 =1
53 CrEp1.ace Local clock ticks Integer >0 =1
54 APE P1ace ready Local clock ticks Integer >1 =1
55 SPE.P1.acelmin Local clock ticks Integer >0 =4
56 CpEp2 acc Local clock ticks Integer >0 =1
57 ApE P2 ace,C-END Local clock ticks Integer >0 =3
58 AcComp Local clock ticks Integer >1 =1
59 ApD begin Local clock ticks Integer >0 =1
60 AFS begin Local clock ticks Integer >0 =0
61 Acpm-civ Local clock ticks Integer >0 =0
62 Hpq Local clock ticks Integer >0 >4

Notes:
e Items 1: The RPP sub-units are ready to receive a command 2 ticks after the MCU asserts the Node_Reset
signal.

e Item 2: Sip polyn is determined by the minimum delay for the OU to assert the output strobe signal after the
MCU issues the command.

e Item 3: Apppi rcvwnplmin 1S determined by the minimum delay for the IU to open an reception window after the
MCU issues the command.

e Item4: Cppp, is taken as the delay from the closing of the IU reception window until the IDU outputs the
corresponding results.

e Item S: App; crnp is taken as the delay from the IDU output until the MCU reads the failure signal from the
SMU, which includes an assessment of the NDU output.

e Item 6: There is no need to delay the start of Initial Synchronization after Initial Diagnosis is complete.

e Item 7: The OUs at the BIUs are ready to send Initial Synchronization messages right after sending the Initial
Diagnosis message. Therefore, in effect, the OU is ready to send immediately at the start of Initial
Synchronization.

e Item 8: The IU can open the Initial Synchronization window just one tick after closing the window for Initial
Diagnosis. Therefore, in effect, the IU is ready to open a window immediately at the start of Initial
Synchronization.

e Item 9: Bgp polyin is determined by the minimum delay for the OU to set the output strobe signal after the MCU
issues the command.

e Items 10, 11, and 12: Bp |, Bpilnin, and Bplni, are taken as the minimum required delays to ensure the
diagnosis is complete before the OU sends the message: 1 tick for the NDU, plus 1 tick for the SMU and MCU,
plus 1 tick for the OU.

o Item 13 and 14: Agpp; Rcvwnplnin @0d Agp p2 Revwnbplmin ar€ determined by the minimum delay for the IU to open
a window after the MCU issues the command.

e Items 15 and 16: Agpp3 RcvwNDlmin @0d Agp ps RevwNDlmin are determined by the minimum delay for the IU to
open a window after the corresponding Accept output is asserted.

e Items 17,18, 19, and 20: Cgppi, Csppr, Cspps, and Cgp ps are determined by the minimum delay to generate an
Accept output after the closing of an reception window.

o Item 21: Scp polmin is determined by the minimum delay for the OU to set the output strobe signal after the MCU
issues the command.

o Item 22: Aspp; rcvwnplmin 1S determined by the minimum delay for the IU to open a window after the MCU
issues the command.

o Item 23: Ccpp, is taken as the delay from the closing of the IU reception window until the IDU outputs the
corresponding results.

o Item 24,27, and 30: Scp pilnins Scp.p2lmins and Scp p3lnin are taken as the minimum required delays to ensure the
diagnosis is complete before the OU sends the message: 1 tick for the NDU, plus 1 tick for the SMU and MCU,
plus 1 tick for the OU.

183

Items 25, 28, and 31: Acp p> revwiblnins Acb p3 RCVWNDImins a0d Acp ps RcvwNDImin cOrrespond to the minimum
delays for the IU to open a window after the closing of another.

Items 26, 29, and 32: Ccp py, Ccopps, and Cep pg are taken as the delays from the closing of the IU reception
window until the IDU outputs the corresponding results.

Item 33: Acppscenp is taken as the delay from the IDU output until the MCU reads the failure signal from the
SMU, which includes an assessment of the NDU output.

Item 34: This is the delay to send the mode message to the PE after the MCU issues the command to start the
execution of the Schedule Update protocol. The PE_OU takes 1 tick to do this.

Item 35: Sy polmin 1S determined by the minimum delay for the OU to set the output strobe signal after the MCU
issues the command.

Item 36: For RPP2, Agy pi rcvwnplmin 18 determined by the minimum delay for the IU to open a window after
the MCU issues the command.

Item 37: Cgy p is taken as the delay from the closing of the IU reception window until the IDU outputs the
corresponding results.

Item 38: Ssy pilmin 1S taken as the minimum required delay to ensure the diagnosis is complete before the OU
sends the message: 1 tick for the NDU, plus 1 tick for the SMU and MCU, plus 1 tick for the OU.

Items 39 and 41: Csyp; and Cgy p; are taken as the minimum delays from the closing of the IU reception
window until the RVU result is available at the output of the OU message buffer.

Items 40 and 42: Sgy pslmin and Ssy pslnin are taken as the minimum required delays to ensure the diagnosis is
complete before the OU sends the message: 1 tick for the NDU, plus 1 tick for the SMU and MCU, plus 1 tick
for the OU.

Item 43: Cgy pq4 is taken as the delay from the closing of the IU reception window until the IDU outputs the
corresponding results.

Item 44: Agy pscrnp is taken as the delay from the IDU output until it is safe to issue the next command. Since
the command by the MCU to execute the PE Communication protocol is triggered by “LT = Tpg - 17, the Tpg
must set such that Tpg - 1 coincides or occurs later than the earliest time at which the schedule assessment is
complete. The Invalid_Schedule signal from the Schedule Processor is available 3 ticks after the IDU output is
ready. The RVU output is delayed by 1 tick at the Schedule processor. Then, there is a 1 tick delay to update
the Schedule_Overload signal. There is 1 tick delay to update the internal Invalid_Schedule. Finally, there is a
1-tick delay to update the output Invalid_Schedule signal. The trigger to issue the MCU command can occur on
the same clock edge the Invalid_Schedule is updated. Agypsc.enp =35 gives the earliest time at which the PE
Communication command can be asserted.

Item 45: This is the delay to send the schedule assessment (SA) message to the PE after the MCU issues the
command to start the execution of the PE Communication protocol. The PE_OU takes 2 tick to do this.

Item 46: Spg po schealmin 1S determined by the minimum delay for the OU to set the output strobe signal after the
MCU issues the command. The OU allows an extra tick to enable the Schedule Processor to retrieve the
schedule information for the first message.

Item 47: Apg p1 RCVWND.schedlmin 18 determined by the minimum delay for the IU to open a window after the MCU
issues the command.

Items 48 and 50: Cpg p; schea and Cpg p2 schea are taken as the delay from the closing of the IU reception window
until the IDU outputs the corresponding results.

Item 49: This is set equal to Spg pi acclmin-

Item 51: During PE Communication, the OU at each BIU sends an accusations message whenever it is not its
turn to send PE messages. When the time comes to send an accusations message at the end of PE
Communication, the message is assumed to be ready just one tick after the last PE message is read.

Item 52: Spg pg scclmin 1S determined by the minimum delay for the OU to set the output strobe signal after the
accusations message becomes available.

Item 53: Cpgp .. is taken as the delay from the closing of the IU reception window until the IDU outputs the
corresponding results.

Item 54: When the time comes to send an accusations message at the end of PE Communication, the message is
assumed to be ready just one tick after the last PE message is processed.

Item 55: Spg p1 acclmin 1S taken as the minimum required delays to ensure the diagnosis, including processing of
the suspicions matrix, is complete before the OU sends the message: 2 ticks for the NDU to process the
syndromes including the suspicions, plus 1 tick for the SMU and MCU, plus 1 tick for OU. The OU processes

184

the accusations message with the same timing as the PE messages. For the OU, the only difference in execution
is that the message is read from the NDU instead of the RVU buffer.

Item 56: Cpg p; . is taken as the delay from the closing of the IU reception window until the IDU outputs the
corresponding results.

Item 57: Apg py acc.cEnp 1S taken as the delay from the IDU output until the MCU reads the failure signal from
the SMU, which includes an assessment of the NDU output. The delay at the NDU includes the reduction of
the suspicions matrix.

Item 58: All the operations can be performed with a data introduction interval of 1, except for the accusations
message during PE Communication, which requires an extra tick at the NDU in order to reduce the suspicions
matrix. This special case is the reason why the accusations message is sent only once.

Item 59: The Preliminary Diagnosis observation window is opened one tick after the MCU issues the
command.

Item 60: Frame Synchronization begins immediately after the end of the second observation window in
Preliminary Diagnosis.

Items 61: The MCU switches from Clique Detection mode to Clique Initialization mode in the clock edge
immediately after a failure or no-clique condition is detected.

Item 62: The minimum value to the synchronization reset delay is determined by the time to diagnose the Input
Eligible Voters and complete the diagnosis after the Accept(ECHO) in Initial Synchronization and
Synchronization Capture. From the Accept(ECHO), it takes 1 tick for the IU to close the reception window, 1
tick for the IDU to output the final input diagnosis, 1 tick for the NDU to update the accusations, and 1 tick for
the SMU to read the accusations and update the failure signal. The synchronization-reset signal can be asserted
concurrently with this update to the SMU failure signal.

14.4. Preservation Mode Specifications

Item Variable Units Type Value RPP
Number Range Constraint
1 Asy Local clock ticks Integer >1 >1
2 AsU STREAM.PO-P2lmin Local clock ticks Integer >1 >1
3 APE sched Local clock ticks Integer >1 21

4 APE sched-acemin Local clock ticks Integer >1 = ApE sched
5 Tep Local clock ticks Integer >0 >1

6 Tsy Local clock ticks Integer >0 >4

7 Tre Local clock ticks Integer >0 >7

8 Tsp Local clock ticks Integer >0 >10

9 Dflt_Num_PE_Msg Unitless Integer >0 >1

10 Asy.SND-MODE-READ-PEmin Local clock ticks Integer >-1 >-1

11 ApE SND-SA-READ-PEmin Local clock ticks Integer >-1 >-1

Notes:

Items 1, 2, and 3: The RPP is designed to handle a data introduction interval of 1 tick.

Item 4: The accusations message at the end of PE Communication is sent with the same data introduction
interval as the scheduled PE messages.

Item 5: The RPP is ready to begin the Collective Diagnosis protocol as soon as the local time is reset. Since the
MCU uses a “LT = T¢p - 1” comparison to trigger the prototocol and LT >= 0, T¢p - 1 must be non-negative.
Items 6, 7, and 8: The MCU must wait at least 3 ticks between commands in order to accommodate the timing
constraints at the PE_QOU.

Item 9: Number of messages per PE for the default schedule.

Item 10: This is the desired delay from sending of the mode message to the PE to reading of the first PE
message during Schedule Update. The RPP can read the first message when the MCU issues the command, but
the PE_OU needs 1 tick to send the mode message out.

185

e Item 11: This is the desired delay from sending of the mode message to the PE to reading of the first PE
message during Schedule Update. The RPP can read the first message 1 tick after the MCU issues the
command, but the PE_OU needs 2 ticks to send the mode message out.

14.5. Failure-Recovery Specifications

Item Variable Units Type Value RPP
Number Range Constraint
1 Arplmax Local clock ticks Integer >1 >1
2 AR Local clock ticks Integer >0 =0
3 Astm Local clock ticks Integer >1 >8

Notes:

e Item 1: Apply.y is the delay to enter the local recovery. Although the SMU can assert the failure signal
immediately, the MCU requires 1 tick to read the signal and switch to a node reset state.

e Item 2: The local recovery operation is part of the Self-Test mode

e Jtem 3: The Self-Test mode consists of a 1-tick node-reset state, a 1-tick idle state, at least 3 ticks for Self Test
commands, and 3 more ticks for the Reset command.

14.6. Clique Detection Specifications

Item Variable Units Type Value RPP
Number Range Constraint
1 App ow Local clock ticks Integer >1 >1

Notes:

e Item 1: Each Preliminary Diagnosis observation window must have a duration of at least one tick.

14.7. Miscellaneous Specifications

Item Variable Units Type Value RPP
Number Range Constraint
1 Num_SPECIAL_Msg Unitless Integer >0 =13
Notes:

e Jtem 1: The number of SPECIAL messages is known and constant.

14.8. Additional Constraints
The previous tables present the basic value constraints for each variable according to its function in the
generic timing model. In addition to this, some variables are constrained by relations to other variables.

These additional constraints are presented next.

During Schedule Update and PE Communication, the data introduction rate must not exceed the

186

capability of the Communication and Computation Modules.

ASU 2 maX(ACOmm ’ AComp)

Asu,sTREAM.PO-P2Imin 2 MAX(Acomm » AcOmp)

APE,sched 2 maX(AComm s AComp)

APE,sched»aﬁ:clmin 2 maX(ACOmm s AComp)

(14.1)
(14.2)
(14.3)

(14.4)

The protocol time triggers must not coincide with other scheduled events. This is expressed in terms
of constraints on the time gaps between protocols, which indirectly constrain the valid values of T¢p, Tsu,

Tpg, and Tgp.
Acp begin = 0
Agu pegin = 0
ApE pegin = 0

ASP,begin 20

(14.5)
(14.6)
14.7)

14. (8)

The duration of a resynchronization interval must be at least as large as the maximum duration of the
Frame Synchronization protocol. This is expressed in terms of a constraint on p;,, which indirectly

constrains the value of Tgp.

pmjn 2 6FS lmax

The duration of the Self-Test mode must meet the restart timing constraints.

Astv 21 (1 + pO)SOUADlmax—| - A

(14.9)

(14.10)

The duration of each observation window during Local Diagnosis Acquisition (a.k.a., Preliminary

Diagnosis) must be at least as large as the worst case duration of a resynchronization interval.

Appow 2 P

187

(14.11)

15. Concluding remarks

ROBUS is the central feature of SPIDER, a scalable family of modular avionics architectures that
will support a range of application and reliability demands. ROBUS-2 is a developmental version of
ROBUS intended for laboratory experimentation and demonstrations of capabilities. The ROBUS
Protocol Processor is a custom-designed hardware component that implements the ROBUS functionality.
The RPP presented in this report implements the full functionality of ROBUS-2 as described in [Torres
05]. In addition, the RPP design has the following features.

Full complement of error checks as described in [Torres 05] for RPP and bus failure detection.
Node kind and node Id can be specified pre-synthesis or at run-time.

Parameterized and synthesizable VHDL description with 73 behavioral and 24 structural
parameters.

Maximum throughput of one ROBUS Message per clock tick for the Schedule Update and PE
Communication protocols. At full speed, the bus can achieve over 90% processing efficiency for
PE messages, measured as the maximum of number of PE message over the total number of clock
ticks in a cycle. The overhead is due to the processing of the Collective Diagnosis, Schedule
Update, and Synchronization Preservation protocols, in addition to the end-to-end bus latency.

Preliminary synthesis and place-and-route (PAR) results for a Xilinx Virtex-2 FPGA [XILINX
05] indicate that the RPP can run at up to 50 MHz. For a 3-BIU by 3-RMU system with 17-bit
ROBUS Messages (1 tag plus 16 payload), the RPP can process messages at the equivalent
throughput rate of 850 Mbps (millions of bits per seconds). For an physical implementation, the
actual throughput will be limited by the lower-level communication network and the interface
between the communication module and the RPP.

The full set of timing equations presented in this report has been implemented in a MATLAB

script. The process of building a particular version of the RPP consists of the following steps: (1)
Determine the value for the variables listed in Section 14 of this report; (2) Run the MATLAB scripts
to compute the VHDL behavioral and structural parameters; (3) Set the parameter values in the
appropriate VHDL package file; and (4) Run synthesis and PAR for the target technology.

189

Appendix A. Detailed specification for the RPP Input Unit

The following are the requirements for the RPP Input Unit (IU). These requirements are intended to
be used to design of a synthesizable VHDL description. Abstract data types of scalar (e.g., Boolean,
Natural, enumerated) and composite (e.g., vector) forms are used to capture the requirements. These
types are built-in or easily expressed in the VHDL language. Lower-level circuit design matters is
assumed to be handled appropriately to ensure compliance with the stated requirements. The target
technology are field-programmable gate arrays (FPGA) running at a minimum clock frequency of 5 MHz,
which should be easily achievable with current technology. The maximum allowed clock frequency is
determined by the implementation. The required parameters, both structural (e.g., number of input
channels) and behavioral (e.g., time to wait before asserting a signal), are introduced as needed.

The Input Unit (IU) requirements are presented as follows. First, the high-level tasks allocated to the
IU are listed for each ROBUS protocol. Then, the basic IU functions are described conceptually. Next,
the IU interface is described in detail. This is followed by a detailed description of the reception modes
for nominal, error-free cases. The generation of error syndromes is addressed after that. Then, the
required response for each MCU command is presented, including the functions to be used and timing
descriptions. The next section lists all the predefined structural and behavioral parameters relevant to the
design of the IU. Depending on the actual design of the IU, additional structural parameters may be
identified. The last section presents additional synthesis-related requirements and various miscellaneous
remarks.

A.1. ROBUS tasks allocated to the Input Unit

Table A.1 lists the tasks allocated to the Input Unit.

A.2. Basic IU functions

The RPP Input Unit serves as an interface between the Communication Module receivers and the
computation elements of the RPP. The structural parameter Num_OK specifies the number of receivers
connected to the IU. For this version of the RPP, it is assumed that the signals from the receivers are
synchronous with respect to the clock signal generated by the physical oscillator, which is denoted by
CLK. The input buffering function is implemented using synchronous first-in first-out (FIFO) buffers. If
the outputs of the link receiver are not synchronous with respect to the oscillator clock signal, then a
signal synchronizer must be used. Figure A.1 illustrates this configuration. Note that the logic before the
input buffer is considered part of the Communication Module.

Communication 2 S RPP
Module Input Unit
Link Signal Input
" ® Receiver [Synchronizer] Buffer —>

b N
| Synchronous
CLK FIFO

Figure A.1: Reception path for ROBUS nodes with a link receiver with asynchronous outputs

191

Table A.1: Tasks allocated to the Input Unit

Major Mode Minor Mode Protocol Process and IU Tasks
Node Kind
Clique Collective Collective PO: BIU & RMU No applicable tasks
Preservation Diagnosis Diagnosis P1: BIU & RMU Receive 1 synchronous-communication message from each opposite kind node;
The execution of this process does not overlap with process P2.
P2: BIU & RMU Receive 1 synchronous-communication message from each opposite kind node;
The execution of this process does not overlap with process P3.
P3: BIU & RMU Receive 1 synchronous-communication message from each opposite kind node;
The execution of this process does not overlap with process P4.
P4: BIU & RMU Receive 1 synchronous-communication message from each opposite kind node
Schedule Update Schedule Update | PO: BIU No applicable tasks
P1: RMU Receive N synchronous-communication messages from each opposite kind
node; Constant DII between messages;
The execution of this process does not overlap with process P3.
P2: BIU Receive N synchronous-communication messages from each opposite kind
node; Constant DII between messages;
The execution of this process does not overlap with process P4.
P3: RMU Receive N synchronous-communication messages from each opposite kind
node; Constant DII between messages
Load the protocol results and assess the new schedule
P4: BIU Receive N synchronous-communication messages from each opposite kind
node; Constant DII between messages
Load the protocol results and assess the new schedule
PE PE Broadcast PO: BIU No applicable tasks
Communication P1: RMU Receive Kheq synchronous-communication messages from each opposite kind
node; Constant DII between messages
P2: BIU Receive Kheq synchronous-communication messages from each opposite kind
node; Constant DII between messages
Accusation PO: BIU No applicable tasks
Exchange P1: RMU Receive 1 synchronous-communication messages from each opposite kind node;
Same DII as for PE Broadcast
P2: BIU Receive 1 synchronous-communication messages from each opposite kind node;
Same DII as for PE Broadcast
Synchronization Synchronization | PO: BIU No applicable tasks
Preservation Preservation P1: RMU Receive 1 INIT fixed-delay communication message from each opposite kind

node; The execution of this process does not overlap with process P3.

192

€61

[090301d 2y} JO uOnEIND Y} J0J APOW UOTJEITUNUITIOD
SULI0)TUOW-SNOUOIYOUASE UT SAFLSSAW JO IOqUINU 9)IULJOPUT UB QATOINY

ad
$s9001d JO UOTINDOX? Y YPIM JUSIINOUOD ST $S3201d STY) JO UONINDIXS Y, ‘dpou

pury oﬁmOQQO Joea woaj a3essowx uonedrunuuod %ME@-@O&E OHDHA T 2A1909Y nIig ‘vd
AOOOHOHQ AU} JO uoneinp ayj J0J apowr uonedrunuwuod
wﬁfoﬁﬁoaumsocogoc%mﬂ ut sagessowr JO Isquunu IUIIOPUL UB IATIIIY
‘1d
$59001d JO UONINOAXQ JY) Y)IM JUSIINJUOD ST $52001d SIY) JO UOTINJIXI Y, ‘Opou
pury aysoddo yoeo woiy 93essowl UOHBIIUNWWOD AR[OP-PIX] OHDH [A1y NINY :¢d
'J000301d 2y} JO uoneINp Y} 10j OPOW UONEBIIUNIWOD
SULI0ITUOW-SNOUOIYOUASE UT SOFBSSOW JO JOqUINU JIULJIPUT UB dAIIIY
vd
ssao01d JO U01INd3aXa Y} YIM JULINdUO0I ST ssao0ad ST} JO UOnNndaxa ay I, MOUOE
pury ausoddo yoeo woly 95essow UOTIBIIUNWIWO AR[OP-PAXI} LINT [A1y nig :zd
'1000301d 2y} JO uoneINp Y} 10j OPOW UONEBIIUNIWOD
SULI0ITUOW-SNOUOIYOUASE UT SOFBSSOW JO JOqUINU JIULJOPUT UB dAIIIY
ed
ssaooad JO U0o1INd33Xa AY] YA JU.LINdu0d St ssaooxd ST} JO UOnndaxa 9y J, WO@O:
pury oﬁmoggo Joea wo.aj a3essowx uonedrunumod %ME@-@O&@ LINI [2AIRO9Y NNYA :1d GOENN«GOH&OG%W
sysel 9[qedrjdde oN nig :od renmy UONBZIUOIYOUAS
apou puny asoddo yoes woiy a3essoul UONBITUNWWOI-SNOUOIYIUAS | QAIINY NG 2 NI9 :1d [enuy pue uonezifeniuy
sysey o[qeordde oN | NN 2 NI4 :0d | sisouSel [eniu] | sISOUSeI([enIu] anbrH
UONBAISSAI] UONBAIISAIJ
apour Jofew uoneAlasaid anbij) 10J se oweg Zd-0d | uoneziuoiyouks UONBZIUOIYOUAS
uonesdrunuwo)) uoneduNuWwo))
apour Jofew uoneAlasaid anbiy) 10J se oweg Zd - 0od Ad Ad
apou Jofew uonealasaid anbij) 10J se oweg vd - 0d | @repdn smpayos arepdn o[npayos
sIsougeI([sisougel(q
opow Jofew uoneAIasald anbi[) 105 se oweg +d - 0d QATIII[[0D QAT)II[0D utof anbr)
apou
pury aysoddo yoes woly a3essow UONBIIUNWWOD AB[QP-PaxL) OHDH | QAN nig vd
apou
pury aysoddo yoes woly a3essow UONBIIUNWWO AB[AP-Paxly OHDH | QAINY NNY ‘€4
“+d sseo01d yym dep10A0 jou Soop $s9001d SIY) JO UOIINDIXA YT, ‘opou
pury ausoddo yoeo woiy oessow UOIBIIUNWWO AR[OP-PAXI} LINIT [9AI9Y nig :zd
pury] d3poN
syseq, NI pue ss300.1d [090301d IPOJAl JIOUIJA IPOIA .—c_,ﬂz

Major Mode Minor Mode Protocol Process and IU Tasks
Node Kind
Collective Collective PO - P4: BIU & Same as for Clique Preservation major mode
Diagnosis Diagnosis RMU
Clique Local Diagnosis Local Diagnosis | PO: BIU & RMU Receive an indefinite number of messages in asynchronous-monitoring
Detection Acquisition and Acquisition communication mode during two consecutive intervals of equal and
Synchronization predetermined duration.
Acquisition Frame PO: BIU & RMU Execute the Frame Synchronization protocol
Synchronization Receive an indefinite number of messages in asynchronous-monitoring
communication mode for the duration of the protocol
Synchronization | PO: BIU & RMU Receive 1 ECHO fixed-delay communication message from each opposite kind
Capture node
Receive an indefinite number of messages in asynchronous-monitoring
communication mode for the duration of the protocol
Collective Collective PO - P4: BIU & Same as Collective Diagnosis for the Clique Preservation major mode
Diagnosis Diagnosis RMU
Acquisition Acquisition
Self-Test Self-Test Self-Test PO: BIU & RMU No applicable tasks
Reset Reset P0O: BIU & RMU Reset the Input Unit

194

The IU handles all timing aspects related to the reception of messages. The IU implements the
reception functions to support the point-to-point communication modes: synchronous, fixed-delay, and
asynchronous-monitoring. The IU implements the frame-synchronization function, which is essentially a
computation-activation function based on the timing of received synchronization messages. The IU also
implements the schedule processing function, which is responsible for storing the PE communication
schedule, performing an assessment to determine its validity, and converting the schedule into signals
suitable for control of the computation pipeline. The IU location at the top of the RPP data-processing
path makes it the ideal module to control the timing of the computation pipeline. The timing of the IU
control outputs is referenced to the local time, events generated within the RPP, or received events. The
IU is also responsible for reading the communication error signals from the link receivers, performing in-
line timing-error checks on received messages, and generating error syndromes for diagnostic processing
within the RPP.

A.2.1. Synchronous reception

This function is presented mainly from the perspective of a particular point-to-point communication
channel. However, the description applies to every IU reception channel.

Synchronous communication is used with the synchronous protocols: Collective Diagnosis, Schedule
Update, PE Broadcast, Accusation Exchange, and Initial Diagnosis. For this point-to-point
communication mode, the local-time clocks of the source and receiver are assumed to be synchronized
within a particular precision bound. There is also a nominal reception delay, denoted by Rpp, with a
known error bound. Figure A.2 illustrates the relevant timing events for synchronous reception. Tggr is a
local-time reference selected to coordinate the message transmission and reception actions. A message
sent at local time Tsnp is nominally expected to arrive Rpp ticks later at local time Trcy . With the known
synchronization precision bound and the known error in Rpp, it is possible to compute the maximum error
for Trev g, denoted App revlabs-max, fOT @ message sent by a properly operating source. Thus, the RPP at the
receiving node expects to receive the synchronous message at any of the triggering edges of the local-time
clock in the interval:

[TRCV,E - APP,RCVlabs-max’ TRCV,E + APP,RCVlabs»max] (Al)

RPP
<>

»
»

Local Time at sender
TREF TSN D

P Expected-reception interval

i Weey :
| [] | .
[L [] [. .
Trer /]\ Treve /[\ Trroc Local Time at the receiver

Treve - Apprevhibs-max Trevie + Apprevabsmax + 1

Figure A.2: Timeline for synchronous reception

195

This interval corresponds to the triggering edges in the local-time interval:
[Trev e - Apprevhibsmaxs TrevE + AppreVabsmax + 1) (A.2)

This expected-reception interval is also called the reception window. Wgcy denotes the duration of
the reception window:

Wrev = 2App revlabsmax + 1 (A.3)

The send and receive actions must be coordinated to ensure that the left edge of the reception window
does not occur before Tgrgp, i.€., Trevi - Apprcvlabs-max = Trer. In addition, the minimum delay required by
the source to send the message and the minimum delay required by the receiver to open the reception
window, both measured with respect to Trgr, must be taken into consideration to determine Trcyg.
During the reception window, the receiver expects to receive exactly one message from the source. The
received message is held by the input buffer until the scheduled time for processing, denoted by Tproc,
which must satisfy the following constraint.

Teroc 2 Treve + Appreviabs-max + 1 (A4)
In order to reduce the PE-to-PE latency of the bus, the processing of synchronous messages will

always be scheduled to begin immediately after the closing of its corresponding expected-reception
interval. That is:

Trroc = Treve + Apprevlaps-max + 1 (A.5)

The IU must be able to handle synchronous message streams consisting of a known number of
messages with a nominal spacing between them. Consider a generic synchronous-message stream. Kgyeam
denotes the total number of messages in the stream. Agyean denotes the nominal data-introduction interval
(DID) (i.e., the inverse of the nominal message rate) for the stream, measured in units of local clock ticks.
The spacing between the expected-reception intervals for the messages is a function of Apprcvlapsmax and
Agtream- FOT @ given App revlapsmaxs @S Agieam 18 T€duced, the intervals get closer until they eventually abut

and then overlap. This scenario of overlapping reception windows is handled by defining an overall
reception window that applies to the entire synchronous message stream.

Trevg; denotes the expected time of reception for stream message i, with 0 < i < Kgyeam - 1. The
expected-reception interval for the i-th message is:

[TRCV,E,O + i/\eream - APP,RCVlabs»max’ TRCV,E,O + iAstream + APP,RCVlabs»max + 1) (A6)
The scheduled time to begin processing message i, denoted by Tproc;, is given by:
Teroci = TrevEo + 1Astream + App RCVabsmax + 1 (A7)

For Agream < 2App revlabsmax + 1, the expected-reception intervals are considered to form a single overall
window that applies to the entire stream. The reception window for this case is:

[Trev g0 - Apprevlabs-maxs TREVED + Kgiream = 1) Agtream + Apprevlabsmax + 1) (A.8)

The minimum required size for the input buffer (i.e., the minimum number of messages that it must be

196

able to hold) is a function of Appgrcvlibsmax aNd Agyeam- This minimum buffer size, or depth, is an IU
structural constraint.

A.2.2. Fixed-delay reception

This function is presented mainly from the perspective of a particular point-to-point communication
path. The description applies to every IU reception channel.

Fixed-delay communication is exclusively used with the INIT and ECHO messages of the
synchronization protocols: Synchronization Preservation, Synchronization Capture, and Initial
Synchronization. Because the information of main interest is in the time of reception of the messages, the
design of the IU must ensure that its outputs properly preserve this information.

Each received synchronization message is characterized by two items of information: the time of
reception and the content of the message. Correspondingly, two types of IU outputs are used with fixed-
delay reception: timing pulses and message content. A timing pulse is generated a fixed delay after the
reception of an expected synchronization message. The message content is stored in the input buffer
upon reception and forwarded for processing some time later.

Two sub-modes of fixed-delay reception are defined based on whether the reception window has a
predetermined duration or not. Fixed-delay reception with a predetermined reception window size is
used with the Synchronization Preservation protocol, for which it is possible to define a reception window
for each protocol stage. For this reception mode, the generation of the timing pulses and the output of the
message content are coordinated with respect to the reception window. The reception window can be
used as a reference for timing-error detection similarly to the way done for single-message synchronous
reception. Fixed-delay reception without a predetermined reception window size is used with the
Synchronization Capture and Initial Synchronization protocols. For these protocols, there are no
dedicated synchronization-message reception windows, and there is no coordination between the
generation of timing pulses and the output of message content.

Figure A.3 illustrates relevant events for fixed-delay reception with a reception window of
predetermined size. The reference time for the reception window, denoted by Tggp, is based either on the
local time or on locally generated synchronization events, depending on the protocol process. The error
detection and voting functions for synchronization messages in the Route-and-Vote Unit (RVU) require
that the IU generate two pulses for each input channel. The pulses are referred to as the short pulse and
the long pulse. Both pulses are delayed by a predetermined amount with respect to the time of reception
of the synchronization message during the reception window. The delay and duration of the pulses are
determined by IU behavioral parameters. The pulses are generated only if a message with the expected
content (which can be either INIT or ECHO, depending on the protocol processes being executed) is
received during the reception window. The pulses are delayed with respect to the first message received
with the expected content. At most one pair of short and long pulses is generated for each reception
window. For each reception window, the IU performs empty, overload, and overrun error checks. The
content of the received message is held in the input buffer until the time for processing, which is at the
end of the reception window.

197

Reception window

K_H

Message reception Begin message-content processin
g p N e g g p g
| (v R
| L J
! Trroc Local Time
[}
[}
: Adelay \ Ashort |
I I 1
Short pulse
A10ng

Long pulse

Figure A.3: Timing pulses for a synchronization message with a reception window of predetermined size

»
»

For fixed-delay reception without a predetermined reception window size, the short and long pulses
are triggered by the reception of an expected synchronization message, and the delay and duration of the
pulses are the same as for the case of reception with dedicated reception windows. Because the Initial
Synchronization protocol does not preclude the possibility of receiving valid and nearly simultaneous
INIT and ECHO messages, the IU must have separate outputs for INIT and ECHO pulses. Once the
process of generating the INIT pulses is triggered by the reception of a valid message, any new received
INIT message is simply ignored. A similar constraint applies to ECHO messages. For this fixed-delay
reception case, the content of received synchronization messages is handled using the asynchronous-
monitoring reception.

A.2.3. Asynchronous-monitoring reception

Asynchronous monitoring is performed during Local Diagnosis Acquisition and Synchronization
Acquisition in the Clique Detection major mode, and during Initial Synchronization in the Clique
Initialization major mode. The reception intervals during which asynchronous monitoring is performed
are called observation windows (or intervals). During an observation window, each received message is
stored for one clock tick in the corresponding IU input buffer and then it is forwarded to the IDU, where
the actual input-error monitoring takes place. In the Clique Detection mode, the observation window is
open upon transitioning to Local Diagnosis Acquisition, and it remains open until the RVU computes the
reference synchronization event during Synchronization Capture. At that point, the IU closes the
observation window and the IDU generates its final monitoring results. In the Clique Initialization mode,
the observation window is open at the start of the Initial Synchronization protocol and it is closed when
the RVU computes the final synchronization reference event.

A.2.4. Frame synchronization
The Frame Synchronization function finds the gap between consecutive executions of the

Synchronization Preservation protocol and triggers the activation of the Synchronization Capture
protocol. Figure A.4 presents the description of the process.

198

1. Wait until the IDU readies the set of initial eligible sources.
2. Load the initial eligible sources and start the gap timer.

3. Loop:
3.1. If an error is detected, remove the corresponding source from the eligible
sources.
3.1.1. Communication checks for each opposite-kind source:
3.1.1.1. Expecting no link errors
3.1.2. In-line checks for each opposite-kind source:
3.1.2.1. At most one ECHO message expected during the execution of this loop.

3.2. If an ECHO message is received from an eligible source, then restart the gap
timer. Else, if gap timer has expired, then assert Done and exit.

Figure A.4: Frame Synchronization process

Major steps 1, 2, and 3 describe separate activities performed on a clock-tick basis. During step 1, the
protocol waits until the Input Diagnostics Unit (IDU) determines the initial eligible voters based on the
observations during Local Diagnosis Acquisition. During step 2, the protocol loads the eligible sources
and starts the gap timer. The “gap timer” is a time-out timer with a predetermined time-out threshold.
Step 3 is executed continuously from the second tick on until the process completes and the Done signal
is asserted. Steps 3.1 and 3.2 are executed sequentially every tick. In step 3.1, the eligible sources are
updated based on the listed error checks. The communication checks are performed by the link receivers
of the Communication Module. The definition of these checks is determined by the design of the
communication links. The in-line check detects an error when a total of two or more ECHO messages are
received from any opposite-kind source during the execution of the loop. In step 3.2, the gap timer is
restarted every time an ECHO message is received from an eligible source. Note that if an ECHO
message is received from a currently eligible source but an error is simultaneously detected for that
source, then the source is declared ineligible and the message is not allowed to trigger a restart of the gap
timer. If the gap timer expires and no new ECHO messages are received from eligible sources, then the
Done signal is asserted. The expiration of the gap timer triggers the activation of the IU fixed-delay
reception mode to handle synchronization messages for the Synchronization Capture protocol. The errors
detected during the execution of the Frame Synchronization process become an error-syndrome output by
the IU upon completion of the process.

A.2.5. Schedule processing

The communication schedule specifies the number of messages to be transmitted by each PE during
the PE Communication mode. The IU schedule processing function consists of three elements: load the
results of the schedule update, assess the new schedule, and process the active schedule to control the
computation pipeline during the PE Communication mode.

Let N denote the number of BIUs, which is assumed to equal the number of PEs attached to the bus.
The Schedule Update protocol is applied N times in order to determine the number of messages to be
broadcast by each PE. For each PE, the result of the Schedule Update protocol can be a DATA message
with the number of scheduled messages in the payload field, or a PE_ERROR message indicating that the
protocol was unable to determine a valid number of messages. The IU loads these results from the RVU

199

as a series of N consecutive messages sorted by PE identification number in ascending order.

The assessment of the schedule update produces one of three results: invalid, valid, or zero. A
schedule is invalid if the result of the Schedule Update protocol is PE_ERROR for any PE, or if the total
number of scheduled messages exceeds the maximum number of PE messages that the ROBUS can
process during the PE Communication mode. A schedule is valid if it is not invalid. A zero schedule is a
special case of a valid schedule in which the number of scheduled messages is zero for every PE. The IU
must report to the MCU the result of the schedule assessment.

The activity during the next PE Communication mode depends on the result of the schedule update
assessment. If the result is valid, the new schedule is used. If the result is zero, there will be no bus
activity. If the result is invalid, a default schedule is used. The default schedule is constant during run-
time and is known to all the ROBUS nodes and the PEs. For this version of the ROBUS, the default
schedule allocates the same number of transmissions for each PE.

A.2.6. Pipeline control

The IU controls the transfer of data to the computation pipeline. The timing of the IU control outputs
is referenced to the local time, events generated within the RPP, or received events. For diagnostic
purposes, the IU must also indicate when it has opened a reception or observation window. For
synchronous reception, the IU must signal when it is time to begin processing the received messages. The
IU must signal when it has enabled fixed-delay reception for synchronization messages. For
asynchronous-monitoring, the IDU needs to know when each new message is received.

In addition to timing control, for some protocols the IU must also provide information about the nature
of the data. For example, if a message stream is being received, the IU must signal when the end of the
stream has been reached. During PE Communication mode, the IU must indicate which PE is the source
for each scheduled message, and when the stream is switching from PE Broadcast messages to
Accusation Exchange messages.

A.2.7. Error-syndrome generation

The IU generates six types of error syndromes based on the error checks performed. The IU monitors
the error signals from the link receivers and generates corresponding syndromes. The IU generates error
syndromes based on the checks performed during the execution of the Frame Synchronization protocol.
The IU performs empty, overload, and overrun checks and generates corresponding syndromes when
receiving messages during windows with predetermined size. Between reception windows, when no
messages are expected, the IU monitors the inputs for the arrival of unexpected messages and generates
corresponding error syndromes.

A.3. Interface

Figure A.5 shows the signal groups for the Input Unit interface.

200

Oscillator Clock i Received Synchronization Events
MCU Command s Received Message Content
Inputs from the Communication Module i Ilr}flit Pipeline Control
RVU Synchronization Events s Error Syndromes
RVU Processing Results s Immediate Error Syndromes
IDU Node Diagnosis s, Schedule Assessment

Figure A.5: Input Unit interface: signal groups

Table A.2 describes the interface signals for the Input Unit. The “Direction” column identifies the
signal as an input (i.e., generated by another unit) or an output (i.e., generated by the IU). The “Type”
column specifies the structure and value set for each signal. The basic scalar types are the following.

Bit: value set {0, 1}
Boolean: value set {TRUE, FALSE}
Natural: value set {non-negative integers in the range indicated in the table }

Enumerated: value set {as listed in the table}

The composite types are the following.

Boolean Vector (BV): a one-dimensional array of Boolean elements addressed by a Natural-type
index in the specified range. Type BV(a .. b) corresponds to a Boolean Vector with index in the
Natural value range a to b.

Boolean Vector of Vectors (BVV): a two-dimensional array of Boolean elements addressed by
row and column Natural-type indexes. Type BVV(a .. b)(c .. d) corresponds to a Boolean Vector
of Vectors with row index in the Natural value range a to b and column index in the Natural value
range c to d.

ROBUS Message (RM): a two-element record: (Tag, Payload). See XXX for a detailed
description of value sets for the Tag and Payload fields.

ROBUS Message Vector (RMV): a one-dimensional array of ROBUS Message elements
addressed by a Natural-type index in the specified range. Type RMV(a .. b) corresponds to a
ROBUS Message Vector with index in the Natural value range a to b.

The function max(a,b) returns the largest of the Natural-valued variables a and b. In addition, the
following symbols are used: N = number of BIUs; Q = number of nodes of the opposite kind; and L; s =
number of syndrome bits from each ROBUS link receiver.

There is no required default value for some IU output signals. This means that an implementation
does not need to have a particular default value for those signals. If having a default value is desired, then
any arbitrary value within the value set of the signal may be chosen. Arbitrary default values are
indicated in Table A.2 as “don’t care”.

201

0¢

‘parIasse
ST Apeay NDIA Uaym AJUO pIfeA ST [eUSIS SIY) JO anfea Y],
UOTJBAIISAIJ UONBZIUOIYOUAS = UOTJBAIOSAI] OUAS
UONBZIUOIYOULS

[enuf 01 sisouSel([enu] woly = oukg™enuy Al

armde) uoneZIuoIYoUuAS

(UOTIBAISAI JUAS
‘uoneoTUNUIUIO) Hd
‘Qepd o[npayos
‘SISOUSRI(] QATIO[0D)
‘ouk§renIu I
‘amyde)y ouks—qd

891, J19S
0} uonismboy sisougel(] (g0 wolj = aaxmde) JUAS (d e “059Y)
Jpows JouTW JJ¥ U)o :pojeIowInuyg ndug IPOIN_ IoUTN_ NDIN
‘pa1Iasse SI Apeay NDIA Usym dpou Jolew
utof anbr) oy} ur ATuo prfeA SI [euJIS SIY) JO ON[BA Y], e
(puooas = [1811} = ()) 9042 onsoueIp J4¥ USIIND) e 1 0 JemieN ndug Q[oADY dusoudeq NDIN
(uomeAIasaig enbr)
‘urof~onbrry
‘uonezifentuy—onbrp)
‘pajIasse ‘uonoale enbiH
ST Apeay NDIA UeyMm ATUO pIeA ST [euSIs SIY) JO oneA oYL, e 9S9LJPS)
spour 1ofeul g4y uaLn) e JpIrerownuy nduy IpoIN Iole]IN NDIN
‘urese s19sa1 J4y oy} [BUN JUBISUOD SUTBUAI
pue ‘Apeay NDIA 1s11J Y} pue 1951 Jd ¥ SB[U} usamlaq
[eAIOIUT QWD AU} SulInp NDIAN Ul Aq PIYJIe] :oneA ORI @ (NN)XeW * |
ToquINu UONEIYNUIPT APpOU PAYdS e ‘[eIneN indug PI' 9PON" NDIN
‘urese s19sa1 J4y oY} [BUN JUBISUOD SUTBUAI
pue ‘Apeay] NDIA 111 Y} pue 19591 Jd ¥ SB[oY) usamlaq
[eAIOIUT Qwn) oy} Sumnp DN oY} Aq PaYOIe oneA OnelS e (NN “N19)
puny apou g4y payroads e ‘parerownuyg nduy pury] spoN NDIN
(ML U0 1959y 1) 2AnIsod pajIassy e
39591 Suteq ST ‘(DA Y} SUIpnyour ‘gJqy 2Imud
oy Jey) Ajdwr Jou soop [euSIS SIY) JO UOTIISSSE AU} 1B} QION e
91e)s J[NEJOp Y} 0) UINJSI AJRIPIWWI UB SPUBTUUIO) e ueajoog ndug 1989y 9pON NDIN puewo) NHN
‘[eusdis
ST JO 9[0AD AInp 9y Jnoqe pew 9q [[eys uondwinsse oN e
1 < 0 :uonisuen} (SurO3SIN I0) QAT e
‘dd¥ 9y SeALIp pue awn Jo o3essed oy SyIew [BUTIS SIYT, o
I0ye[[1950 [eo1sAyd [8o0] oY) Aq pareIoudd [eudlS e ng induy SO 201D 10JB[[SO
uondirsaq AdLy, | wondauxiq JwieN [eudiS dnous) [eusis

Qoejaa] Jrun-induf 7V 9[qe L

Signal Group

Signal Name

Direction

Type

Description

MCU_Schedule_Status

Input

Enumerated:
(Valid, Zero, Invalid)

Assessment result for latest schedule update
The value of this signal is valid only when MCU_Ready is
asserted.

MCU_Output_Enable

Input

Boolean

Enable control for the RPP broadcast output (i.e., output to
opposite-kind nodes)

Asserted positive (i.e., TRUE when the output is enabled)
The value of this signal is valid only when MCU_Ready is
asserted.

MCU_Ready

Input

Boolean

Indicates when the MCU is issuing a new mode command
Asserted positive (i.e., TRUE when a new command is
available)

Inputs from the
Communication
Module

CM_Message_In

Input

RMV(I .. Q)

Message content output by the link receivers

Each vector element is independent from the others

The value of signal CM_Message_In(i) for input channel i
is valid only when CM_Strobe_In(i) is asserted.

CM_Syndrome_In

Input

BVV(1 .. Q)1 .. Lig)

Error syndromes generated by the link receivers

Each element is independent from the others

Asserted positive (i.e., TRUE when an error is detected)
The value of signal CM_Syndrome_In (i) for input channel
i is valid only when CM_Strobe_In(i) is asserted.

CM_Strobe_In

Input

BV(.. Q)

Indicates when a link receiver has a new message or is
reporting the detection of an error

When signal CM_Strobe_In(i) is asserted, the IU always
reads both CM_Message_In(i) and CM_Syndrome_In(i).
Each vector element is independent from the rest
Asserted positive (i.e., TRUE when a new input is
available)

The value of this signal is always valid, except when
MCU_Node_Reset is asserted.

RVU Synchronization
Events

RVU_Accept_INIT

Input

Boolean

Output of the Accept(INIT) function
Asserted positive (i.e., TRUE when Accept is triggered)

RVU_Accept_ECHO

Input

Boolean

Output of the Accept(ECHO) function
Asserted positive (i.e., TRUE when Accept is triggered)

RVU Processing
Results

RVU_Transform_Result

Input

RM

Result of processing the content of received messages
The value of this signal is valid only when RVU_Ready is
asserted.

203

Signal Group

Signal Name

Direction

Type

Description

RVU_Ready

Input

Boolean

Indicates when the RVU has a new content result
Asserted positive (i.e., TRUE when a new result is
available)

RVU_Last_Message

Input

Boolean

Indicates when a result is the last in a sequence

Asserted positive (i.e., TRUE when a result is the last one)
The value of this signal is valid only when RVU_Ready is
asserted.

IDU Node Diagnosis

IDU_Invalid_Input

Input

BV(.. Q)

Result of error detection performed on the received
messages

Each vector element is independent from the others
Asserted positive (i.e., TRUE when the corresponding input
channel is invalid or untrustworthy)

The value of this signal is valid only when IDU_Ready is
asserted.

IDU_Ready

Input

Boolean

Indicates when the IDU has a new result
Asserted positive (i.e., TRUE when a new result is
available)

Received
Synchronization
Events

IU_Init

Output

BV(..Q)0.. 1)

Timing pulses for received INIT synchronization messages
Each row is independent from the others

For input channel i, [U_Init(i)(0) = short pulse and
IU_Init(i)(1) = long pulse

Asserted positive (i.e., TRUE during a pulse)

The value of this signal is valid only during the execution of
the synchronization protocols.

Default value: Don’t Care

IU_Echo

Output

BV .. Q). 1)

Timing pulses for received ECHO synchronization
messages

Each row is independent from the others

For input channel i, [U_Init(i)(0) = short pulse and
IU_Init(i)(1) = long pulse

Asserted positive (i.e., TRUE during a pulse)

The value of this signal is valid only during the execution of
the synchronization protocols.

Default value: Don’t Care

204

S0¢T

a1e)) 1,u0(J :9n[eA Jnejaq
‘uonedIUNWWoO)) gJ Sunmp pojlosse

ST Apeay ()] Uaym A[Uo pIfeA ST [euSIs STy} JO anfea oy,
opow UOIEIIUNWIWO))

Ad Sunmp aSessow g4 JuaIInd Ay} Jo (I SPON

N 1 [eImeN

mdino

PI @0moS N1

1B 1,u0(J :on[eA Jnefegd

“UOTROIUNUWIWO)) HJ SUMNp pajIasse

ST Apeay ()] uoym ATUO pIfeA SI [euSIs SIY} JO anfea Y],
9pow UOT}BOTUNUITIO))

gd Sunnp oFessow e Jo 2INjeU oY) S9ILIIPU]

OOV ‘dd)
:pojeIowInuUy

mdinp

00y 10 Hd NI

HSTVA -en[eaA jmegag

"PONIASE ST 39Sy 9PON NDIN

uoym 1dooxa ‘prfea sAempe st [eu3Is SIY) JO anfeA Ay J,
(Surareoar uoym Y.L 9°1) 9anIsod pajIdssy
S9ZLSSW 9A19931 03 Suroadxa SI (| AYJ USYM SABOIPU]

ueadjooygq

mdinp

SuIA09y NI

HSTVA en[eA jnejed

‘Po1IasE SI 195y °PON NDIN

uoym 1daox9 ‘prfea sAemie sI [eu3Is SIY} JO anfea A,
(d1qe[reAe

SI J[NSOI MAU B UaYM Y.L <9'1) 2AnIsod pajIassy

jurod ojerpauriojur jueyrodwr ue payoear

10 AJTATIOR JUIIND & pajerdwod sey] 9Y) uaym SoJedIpuy

ueafoog

dinp

Apedy NI

HSTVA en[eaA jmegag

"pansst ST pULTIIOD

1989y = 9POJA JOUIJA © JO PAYIdse ST 1Sy 9pOoN NDIN
uoym 1dooxa ‘parrasse st (U] 2qoNs N

I9)Je)[O1) JUO PIIASSE SAeMIe SI (1IN~ 2qons N
(paA1d2l

ST 9FBSSOUW MU B UM L ©9'T) 9AnIsod pojIassy
SIOU)0 oY) WoI) Judpuadapur ST JUSWI[S J0IIIA [orH
POATOOQI UJ9q SBY AZBSSOW MU B USYM SJBIIPU]

(G DAd

dinp

IO 2qong NI

[onuo)) aurpdig

218D 1,UO0(J :9n[eA JNej
"Pa1IasSe ST Apeay ()] UoyM JO PILIISSE ST

IO _oqons N[Jo prey Surpuodsariod oy uoym AJUo pIfeA
SI TeusIs s1Y) Jo anfeA o) ‘opowr uondesar ay3 uo Surpuadoq
SI9YI0 oY) WoIJ Juapuadopur ST JUSWI[S J0JOIA Yoey

JUQIUOD 25BSSOW POATIIDY

(U DAY

mdino

QO a3essoIN_ NI

JuuU0))
9ZeSSIIA] PIAIIIY

uondirsaq

adL],

uonRIIQ

duwieN [eusIS

dnoaxy [eusiq

Signal Group

Signal Name

Direction

Type

Description

IU_Last_Message

Output

Boolean

Indicates that the last message in a stream has been reached
during Schedule Update and PE Communication mode
Asserted positive (i.e., TRUE when the last message has
been reached)

The value of this signal is valid only when IU_Ready is
asserted during Schedule Update and PE Communication.
Default value: Don’t Care

Error Syndromes

IU_Unexpected_Message

Output

BV(.. Q)

Indicates that an unexpected message has been received
Each vector element is independent from the others
Asserted positive (i.e., TRUE when an error is detected)
The value of signal IU_Unexpected_Message (i) is valid
only when IU_Receiving is not asserted and
IU_Strobe_Out(i) is asserted.

Default value: Don’t Care

IU_Link_Error

Output

BVV(1 .. Q)1 .. L)

Indicates that a link error has been reported by the
Communication Module receivers

The output of this syndrome is coordinated with the output
of message content.

Each element is independent from the others

Asserted positive (i.e., TRUE when an error is detected)
The value of signal IU_Link_Error(i) is valid only when
IU_Receiving is asserted and, depending on the reception
mode, when IU_Strobe_Out(i) or when IU_Ready is
asserted.

Default value: Don’t Care

IU_Empty_Buffer

Output

BV(.. Q)

Indicates that the input buffer is unexpectedly empty

The output of this syndrome is coordinated with the output
of message content.

Each element is independent from the others

Asserted positive (i.e., TRUE when an error is detected)
The value of this signal is valid only when IU_Receiving is
asserted and IU_Ready is asserted.

Default value: Don’t Care

206

L0T

a1e)) 1,U0(J :onfeA Jneyog
‘pauasse sI (DO 2qons NI

uaym pIfeA ST (1)IoXg Yur] ww]] [eusIs Jo anfea Y[,
(p9199)9p ST J01I0 UB Uaym gL 2'T) 9Anisod paIassy
SIaU}0 Ay} woly Judpuadopur ST JUSUWII[R Yorq

“Jueuod agessow jo ndino

9} YIIM PIJBUIPIOOD JOU ST QWOIPUAS STy} Jo Indino ayJ,
SIOAT0I Q[NPOJA UONEBIIUNIWIO))

) Aq pajrodar uoaq Sey JO1Id YUI] B Je) SAIBIIpU]

1 D@ T DAAL

mdinp

JoLrg yur T wwy N

SOWIOIPUAS
JOLIF dJeIpaurui]

Q1B 3,U0(J :en[eA J[efod

'1050301d UOLJRZIUOIYOUAS

owrer] oy Jo uono[dwod ay) [euSIS 0} PYIASSE

ST Apeay ()] uoym ATUO pIyeA SI [euSIs SIY} JO anfea Y,
(P93109319p ST 101D UB udym F Y.L <9°1) 9anIsod pajIassy
SI9UJ0 9y} woj Juopuadapur ST JUSW[R YorH
UONBZIUOIYOUAS

Qwier,] SuLInp pajodlop Sem JOLID UE Jey) S9IedIpu]

(G DAd

mdino

IoLIg OuAS euwrely]

a1e)) 1,uU0(J :on[eA Jnejeq
"PolIasse ST Apeay ()] pue pojIosse

ST SUTATE0Y] UayMm AUO PIfeA ST [eUSIS SIY) JO anfeA Y],
(P9109)9p ST JOIID UB UM Y.L 2°T) 9AnIsod pojIassy
SI9Y30 oY) W0y Juapuadapur ST JUSWA[S Yorg

“JUSIU0d 9FessaW Jo

ndino ay) YIM pajeuIpIOnd ST SWOIPUAS STy} Jo ndino oy,
(poroadxoe uey) 1031e] st uondadax

a3essowl Jo 9jel Ay} Jey) ‘AT3ud[eAInba 10) pajoadxo uey
soSessow arow Surp[oy st 1oynq yndur oy Jey) seyedIpu]

(G DAd

mdino

peoloAQ Ijng NI

218 1,U0(J :9n[eA Jneje
"PaNIasse ST Apeay (] pue pajIasse

ST SUTATE0Y] UayMm AUO PIfeA ST [eUSIS SIY) JO aneA Y],
(P9109)9p ST JOIID UB UayM L 2°T) 9AnIsod pojIassy
SI9Y10 oY) W0y Juapuadopur ST JUSWA[S Yory

"JuQIu0d a5essow Jo

ndjno oy YIm poJeuIpIOnd ST WOIPUAS SIY) Jo Indino oy,
mopurm uondadar e Jo Jurso[o

oy Joyje Joynq Indul ue UT UTBWAT SOSeSSAW Jey) SOJedIpu]

(G DAd

mdino

unuoAQ du O

uondirsaq

adL],

uonRIIQ

duwieN [eusIS

dnoaxy [eusiq

Signal Group Signal Name Direction Type Description
IU_Imm_Buffer_Overload | Output BV(1. Q) Indicates that a link error has been reported by the
Communication Module receivers
The output of this syndrome is not coordinated with the
output of message content.
Each element is independent from the others
Asserted positive (i.e., TRUE when an error is detected)
The value of signal IU_Imm_Link_Error(i) is valid when
IU_Strobe_Out(i) is asserted.
Default value: Don’t Care
Schedule Assessment IU_Zero_Schedule Output Boolean Indicates when the number of scheduled messages for the
lastest schedule update is zero.
Asserted positive (i.e., TRUE when there are no scheduled
messages)
The value of this signal is arbitrary during Schedule Update
until the assessment of the new schedule is complete. At all
other times, the value is constant and valid.
Default value: Don’t Care
IU_Invalid_Schedule Output Boolean Indicates when the lastest schedule update is invalid.

Asserted positive (i.e., TRUE when the downloaded
schedule is invalid)

The value of this signal is arbitrary during Schedule Update
until the assessment of the new schedule is complete. At all
other times, the value is constant and valid.

Default value: TRUE

208

A.4. Message reception

This section provides a detailed description of the reception modes for nominal, error-free cases. The
following basic conventions are adopted in the timing diagrams. Other diagrammatic conventions are
explained as needed.

e The Clk signal is represented by tick marks on a time axis indicating the timing of the triggering
edges (i.e., 0 — 1 transitions).

triggering edge

Clk I N A R

e For scalar Boolean variables, a value of TRUE is represented by an unlabeled gray box and a
value of FALSE by an empty section.

FALSE TRUE

Boolean signal

e For scalar and vector variables, a labeled gray box is used to indicate that the signal has a certain
value, which may or may not be known a priori but is not arbitrary.

X=A

Signal X

e A crosshatched section in the waveform of a particular signal indicates that the signal may have
an arbitrary value (i.e., a “don’t care”) during that section of the waveform.

Arbitrary values
YA\

Signal X | [] |

A.4.1. Synchronous reception

Synchronous reception is characterized by the use of time-referenced expected-reception intervals.
The Input Unit handles this reception mode using a uniform processing model whereby messages are
always part of a stream of known size, which can be greater than or equal to one. Each synchronous
message has a corresponding expected-reception interval of predetermined duration. The size of the
message reception interval for the Initial Diagnosis protocol is specified by parameter ID_Wnd_Sz. For
the other synchronous protocols, the size of the reception interval for each expected message is given by
parameter Syncns_Wnd_Sz.

Figure A.6 shows an example of the timing for synchronous reception of a one-message stream. For

illustration purposes only, the duration of an expected-reception interval for a synchronous message is
denoted by Wgcy, which is measured in units of local-clock ticks. Wgcy =5 is an arbitrary value chosen

209

for illustrative purposes and is not meant to represent a typical value. A single generic input channel i is
shown. The IU expects to receive a message from each opposite-kind source during the reception
interval. Only messages that arrive during the reception interval are accepted. IU_Receiving is set TRUE
to indicate that the IU is expecting to receive a message. Note that IU_Receiving is delayed by one clock
tick with respect to the expected-reception interval. The assertion of IU_Ready indicates that the end of
the reception interval has been reached and the result is ready for processing. The IU_Strobe_Out(i) is
always asserted one tick after a message is received.

Expected Reception
Wrev
Clk 4 111111y

CM_Message_In(i) = A —

CM_Strobe_In(i)

TU_Message_Out(i) — Al -

IU_Strobe_Out(i)]

IU_Receiving

IU_Ready
Figure A.6: Synchronous reception of a one-message stream with Wrcy =5

There are two reception cases for multi-message streams. In the simplest case, the messages have
expected-reception windows that do not overlap or coincide end-to-end. Figure A.7 shows an example of
reception for a three-message stream (i.e., K = 3) with Wrey =5 and DII = 7. As can be seen, there is a
separate reception window for each message and the reception activity for each is the same as for the case
of reception of a one-message stream. Note that IU_Strobe_Out(i) is asserted one tick after a message is
received, and IU_Ready indicates when the result is ready for processing.

Reception windows

Clk III|IIII|IIII|IIIIII;

CM_Message_In(i) —— A [B Ic -

CM_Strobe_In(i) []

IU_Message_Out(i) — Al B cl--

IU_Strobe_Out(i) [

IU_Receiving | | | || |

IU_Ready] []

Figure A.7: Synchronous reception of a multi-message stream with separate reception windows
(K=3,Wgey=5,DII=7)

210

The second case of multi-message stream reception involves expected-reception intervals that overlap
or coincide at the ends. For this case, the messages are received with a single continuous reception
window. All the messages are expected to arrive within this window with an average DII approximately
equal to the nominal value. Figure A.8 shows an example of reception for a stream of three messages
(i.e., K =3) with Wgcy = 5 and DII = 3. The IU outputs the messages at the times corresponding to the
end of their respective expected-reception intervals, similarly to the way it is done for the other
synchronous reception cases.

Reception window
Wiey |, DI DI
Clk N I I I S Y Y N N N N M | I;

CM_Message_In(i) 1Al [B C -

CM_Strobe_In(i) []

IU_Message_Out(i) — Al B Cl--

IU_Strobe_Out(i) []

IU_Receiving | |

IU_Ready

Figure A.8: Synchronous reception of a multi-message stream with a continuous reception window
(K=3, Wgey =5,DII =3)

A.4.2. Asynchronous-monitoring reception

In this reception mode, the IU receives messages without knowing in advance exactly when the
observation window will end. Signal IU_Receiving remains high during the observation window. The
IU closes the observation window upon detection of a certain expected event generated locally within the
RPP. The IU is required to output every received message with exactly one tick delay from the time of
reception. Figure A.9 shows a reception example for an arbitrary input pattern.

Observation window éi
Clk 4111111000111y
CM_Message_In(i) = A B IC -
CM_Strobe_In(i) []
IU_Message_Out(i) — Al [B] [C] -
IU_Strobe_Out(i) 1 1[0 Observation window closed
- - upon detection of a certain
IU_Receiving —— | expected event (not shown
here)
IU_Ready []

Figure A.9: Asynchronous-monitoring reception

211

A.4.3. Fixed-delay reception

Fixed-delay reception is used only with the INIT and ECHO messages used in the synchronization
protocols. For this reception mode, the IU outputs the timing of reception separately from the content of
the received messages. There are two cases of fixed-delay reception, depending on whether a
predetermined expected-reception interval is defined or not.

For fixed-delay reception with an expected-reception interval of predetermined size, the location of the
intervals is referenced to the local time or to local events generated within the RPP during the execution
of the Synchronization Preservation protocol. During a particular reception interval, only a single
synchronization message with a specific content is expected from each input channel. The size of the
reception intervals varies depending on the synchronization protocol process being executed. The size of
the reception windows is specified by the behavioral parameters SP_INIT_Wnd_Sz(MCU_Node_Kind)
for INIT messages and SP_ECHO_Wnd_Sz(MCU_Node_Kind) for ECHO messages. Note that these
parameters are a function of the node kind, which is specified by signal MCU_Node_Kind. Figure A.10
shows an example of fixed-delay reception with an expected-reception interval of predetermined size.
Whrkev =5 is an arbitrary value chosen for illustrative purposes only. The shown delay and the duration of
the short and long pulses are also arbitrary. For this particular example, only one INIT message is
expected during the reception window. The IU_Init(i) pulses are only triggered by the reception of the
first INIT message. Any additional messages received from opposite-kind source i during the reception
window do not trigger additional pulses. If no INIT messages are received during the window, then the
pulses are not generated. Notice that the content of the message is output after the end of the reception
interval, similarly to the way it is done for synchronous reception.

Expected Reception

\\
RCV

Clk 41 1 1 1110 111 1111y

CM_Message_In(i) _- I

CM_Strobe_In(i)

IU_Message_Out(i) — 1] --

IU_Strobe_Out(i) []

IU_Receiving | |
1U_Ready []

IU_Init(i)(0) Short Pulse

Long Pulse

TU_Init(i)(1)

| | |
I |
Adelay Ashort

A
long

Figure A.10: Fixed-delay reception with a predetermined reception window size (Wgrcy =5)
When fixed-delay reception without a predetermined expected-reception interval is used, the IU is

receives messages without knowing in advance exactly when the reception or observation window will
end. At a specific point in time, the IU enables a pulse-generation function to start monitoring the inputs

212

for INIT or ECHO messages. The short and long pulses are triggered by the reception of synchronization
messages. The content of the messages is handled according to the asynchronous-monitoring reception
rules. Figure A.11 shows an example for an ECHO message. The pulse-generation function generates
one set of pulses when the expected message is received (in this example, an ECHO message). After that,
no additional pulses are generated. If the expected message is not received, then the pulses are not
generated.

Input monitoring enabled for Reception/Observation
ECHO messages \ window
Clk 41 1 111111111111 1y
CM_Message_In(i) 1L -1E

CM_Strobe_In(i)

IU_Message_Out(i) | E]

IU_Strobe_Out(i) 1

IU_Receiving —=

IU_Ready
TU_Init(i)(0) Short Pulse
IU_Init(i)(1) Long Pulse
I
Adelay Ashon
IA—|
long

Figure A.11: Fixed-delay reception without a predetermined reception window size

The delay and duration of the pulses are independent of the protocol being executed. For INIT
messages, the pulses are generated based on the IU behavioral parameters
INIT_Pls_DIly(MCU_Node_Kind) and INIT_Skw(MCU_Node_Kind), both of which are functions of the
local node kind.

® Ageiylvr = INIT_Pls_DIy(MCU_Node_Kind) (A.9)
o Ayordmar = INIT_Skw(MCU_Node_Kind) + 1 (A.10)
® Apnghir = 2*INIT_Skw(MCU_Node_Kind) + 1 (A.11)

The pulses for ECHO messages are generated based on the IU parameters
ECHO_PIs_Dly(MCU_Node_Kind) and ECHO_Skw(MCU_Node_Kind).

® Ageylecno = ECHO_PIs_Dly(MCU_Node_Kind) (A.12)
* Agonlecio = ECHO_Skw(MCU_Node_Kind) + 1 (A.13)
® Aungrcro = 2*ECHO_Skw(MCU_Node_Kind) + 1 (A.14)

213

A.S. Error-syndrome generation

This section describes the generation of the error syndromes.

A.5.1. TU_Unexpected_Message

An unexpected-message error syndrome is asserted for a particular input channel whenever a message
is received while the IU is not expecting to receive messages (i.e., when there is no active reception or
observation window). This type of error is signaled at the outputs of the IU one tick after the message is
received. Figure A.12 shows various reception cases relative to reception or observation windows. The
value of syndrome IU_Unexpected_Message(i) is valid when IU_Receiving is not asserted and
IU_Strobe_Out(i) is asserted. For these conditions, IU_Unexpected_Message(i) must not be asserted
unless an error has been detected.

Reception/Observation

windows
| | | |
Clk ——1- PRI S SR S >
CM._Strobe_In(i) [] I
IU_Strobe_Out(i) — 1 [] |
IU_Receiving | |
IU_Unexpected_Message(i) —— | | [--

Figure A.12: Generation of the unexpected-message syndrome

A.5.2. TU_Empty_Buffer

For a particular input channel, an empty-buffer error occurs when it is time for the IU to output a
message and the input buffer is empty. This type of error can only happen during synchronous reception
or fixed-delay reception with a predetermined reception window size. When receiving in asynchronous-
monitoring mode, this error cannot happen because messages are always output one tick after they are
received. Two cases need to be considered based on the number of expected messages during a reception
window: single-message reception and multi-message reception. The value of syndrome
IU_Empty_Buffer(i) is valid when IU_Receiving is asserted and either IU_Strobe_Out(i) is asserted for
asynchronous-monitoring reception or IU_Ready is asserted for the other reception modes.

Figure A.13 shows an example for the case of a reception window with only one expected message.
Here, IU_Empty_Buffer(i) is asserted at the end of the reception window because no messages were
received from channel i during the window. Note that IU_Empty_Buffer(i) is asserted at the time to
output the expected message as indicated by the IU_Ready signal. There is no required specific default
value for the elements of the IU_Message_Out signal. This example applies to the reception of single-
message synchronous streams, multi-message synchronous streams with separate reception windows, and
fixed-delay reception with reception windows of predetermined sizes.

Figure A.14 shows two examples for the case of reception windows with multiple expected messages.

214

These examples apply only to synchronous reception. Two streams are expected, each one with three
messages. The expected-reception interval for each individual message has a duration of five ticks (i.e.,
Wrev = 5), and the streams have a nominal DII of three ticks. For the first reception window, the second
message from input channel i is not received, and thus the IU outputs an arbitrary value and asserts the
empty-buffer syndrome. A late reception of the second message would have also resulted in the same
error, although the final output message would have been B instead of C. In addition, if C had been
received before the end of the second expected-reception interval, it would have been output at the time
for message B as the second received message. For the second window, since the third message is
missing, the U asserts the empty-buffer syndrome with the last [U_Ready.

Reception window

Wrey
Clk —1 1 11111 1y

CM_Message_In(i)

CM_Strobe_In(i)

IU_Message_Out(i)

IU_Strobe_Out(i)
IU_Receiving —l

IU_Ready

IU_Empty_Buffer(i)

Figure A.13: Generation of the empty-buffer syndrome for a single-message reception window

Reception window Reception window

Wrev | DII | DII Wrev | DII | DII

Clk T
CM_Message_In(i) —% 1A C A 1B --
CM_Strobe_In(i) [] []
TU_Message_Out(i) — A C A B -
TU_Strobe_Out(i) 1 1

IU_Receiving | |

IU_Ready 1 [1

[U_Empty_Buffer(i) = | | [| |

Figure A.14: Generation of the empty-buffer syndrome for multi-message reception windows

215

A.5.3. TIU_Input_Overrun

This error check is meant to detect when more messages than expected are received during a reception
window. For a particular input channel, an input-overrun error occurs if messages remain in the input
buffer at the end of a reception window when it is time to process the last expected message. This error is
reported only at the end of a window. Similarly to the empty-buffer error, this type of error can only
happen during synchronous reception or fixed-delay reception with a predetermined reception window
size. When receiving in asynchronous-monitoring mode, this error cannot happen because there is no
predetermined number of expected messages and all the received messages are output one tick after they
are received. The value of syndrome IU_Input_Overrun(i) is valid when IU_Receiving is asserted and
either IU_Strobe_Out(i) is asserted for asynchronous-monitoring reception or IU_Ready is asserted for
the other reception modes.

Figure A.15 shows an example for the case of a reception window with only one expected message.
IU_Input_Overrun(i) is asserted at the end of the reception window because more than one message was
received from channel i during the window. This example applies to the reception of a single-message
synchronous stream, a multi-message synchronous stream with separate reception windows, and fixed-
delay reception with a reception window of predetermined size.

Figure A.16 shows a example for the case of a reception window with multiple expected messages. A

three-message stream is expected. IU_Input_Overrun(i) is asserted at the end of the reception window
because some received messages will remain in the input buffer.

Reception window

Clk — 11111111
CM_Message_In(i) A B - -
CM_Strobe_In(i) []
IU_Message_Out(i) —— Al --
IU_Strobe_Out(i) 1

IU_Receiving

IU_Ready

IU_Input_Overrun(i)

Figure A.15: Generation of the input-overrun syndrome for a single-message reception window

216

Reception window
Wgey | DI DII

Clk —LLt 1111111111y
CM_Message_In(i) —Z_1A B cl oL -
CM_Strobe_In(i)] []
IU_Message_Out(i) — A B Ccl--
TU_Strobe_Out(i) 1 1 [

IU_Receiving | |

IU_Ready

TU_Input_Overrun(i) — L

Figure A.16: Generation of the input-overrun syndrome for multi-message reception windows

A.5.4. IU_Link_Error and IU_Imm_Link_ Error

The link-error syndromes are based on communication checks performed by the Communication
Module (CM) receivers. Each receiver generates a vector of error syndromes the size of which is
specified by the structural parameter Num_Link_Synd. Each link receiver asserts its corresponding
CM_Strobe_In signal whenever it has a new message. In addition, CM_Strobe_In may also be asserted
when a link error is detected. The IU is designed based on a simple transaction model by which the
assertion of a CM_Strobe_In input indicates that a new message and error syndrome set is available from
the corresponding link receiver. The IU is required to read the syndromes and appropriately forward
them to its outputs.

IU signals IU_Link_Error and IU_Imm_Link_FError are generated based on the error syndromes from
the link receivers. Whenever a new transaction is received on input channel i, IU_Strobe_Out(i) is
asserted one tick later and the syndromes are output on signal IU_Imm_Link_Error(i). The timing of
IU_Imm_Link_Error is independent of reception or observation windows. On the other hand, the
generation of signal IU_Link_Error is tied to these windows. For asynchronous-monitoring reception, the
messages and syndromes for a particular channel are presented at the IU_Message_Out(i) and
IU_Link_Error(i) outputs one tick after reception. For synchronous reception and for fixed-delay
reception with a predetermined reception window size, the syndromes are output on the IU_Link_FError(i)
signal at the same time the corresponding message content is output. Signal IU_Link_Error(i) is not
asserted for receptions outside of reception or observation windows. The value of syndrome
IU_Link_Error(i) is considered valid when IU_Receiving is asserted and either IU_Strobe_Out(i) is
asserted for asynchronous-monitoring reception or [U_Ready is asserted for the other reception modes

Figure A.17 shows an example of link-error syndrome generation for asynchronous-monitoring
reception. The syndrome bits for input channel i are represented by characters X, Y, and Z. Note that
IU_Link_Error(i) is arbitrary for messages received outside of the observation window.

Figure A.18 shows an example for synchronous reception of a three-message stream. Note that the
timing to output the link syndromes on the IU_Link_Error(i) signal matches the timing to output
CM_Message_In(i) on signal IU_Message_out(i). For this particular example in which there is an input-

217

overrun error, the content and syndromes for the extra message do not reach the IU_Message_Out(i) and
IU_Link_Error(i) outputs, respectively.

Observation window é'
Clk L1 v 11111y

CM_Message_In(i) —— (Al Bl IC -

CM_Syndrome_In(i) = [X i [z -

CM_Strobe_In(i) []
Al BIIC --

IU_Message_Out(i) —

IU_Strobe_Out(i) 1 M

IU_Receiving —— |

IU_Ready |
Y[{Z[=~ -

IU_Imm_Link_Error(i) — X|

IU_Link_Error(i) == x|]

Figure A.17: Generation of the link-error syndromes for an observation window with asynchronous-monitoring
reception

Reception window
. Wgey DII DII
Clk II 1 1 1 | II 1 | I 11

CM_Message_In(i) = 1A B ci bf --

CM_ Syndrome_In In(i) == W X Yi [z] --

CM_Strobe_In(i)] [] []

IU_Message_Out(i) — Al B Cl--
IU_Strobe_Out(i) 1 [[T

IU_Receiving |

IU_Ready

IU_Imm_Link_Error(i) ——— Wl X[Y[ZT--

TU_Link_Error(i) —— Yl

IU_Input_Overrun(i) —

Figure A.18: Generation of the link-error syndromes for a synchronous reception windows

218

A.5.5. TU_ Buffer Overload and IU Imm_Buffer Overload

The purpose of the buffer-overload error check is to detect when the reception rate for a multi-message
synchronous stream with a continuous reception window is higher than expected. It is possible to
compute a maximum expected input-buffer load (i.e., the number of stored messages) for the reception of
a stream using known bounds on the drift rates of the physical clocks, the nominal DII of the stream, and
the delay in processing the first message of the stream at the receiving node. A buffer-overload error
occurs on an input channel when a message is received such that the buffer load will exceed the expected
maximum. The error is assigned to the message that triggers the overload, not the next message to be
output by the IU.

A buffer-overload error cannot occur during an observation window with asynchronous-monitoring
reception because, irrespective of the actual message reception rate, the buffer never holds one than one
message, since all the received messages are output one tick after they are received. For synchronous
reception and fixed-delay reception with a predetermined window size, signal
IU_Imm_Buffer_Overload(i) for input channel i is asserted one tick after an overload-triggering message
is received. The value of signal IU_Imm_Buffer_Overload(i) is valid whenever IU_Receiving and
IU_Strobe_Out(i) are asserted, and it is arbitrary for all other conditions. The timing to output the
syndrome on signal IU_Buffer_Overload(i) output matches the timing to output the received message
content on signal IU_Message _Out(i). Thus, if an overload is detected, IU_Buffer_Overload(i) is
asserted when the offending received message reaches the output. For reception windows with a single
expected message, an overload occurs when more than one message is received, but
IU_Buffer_Overload(i) is not asserted because the extra messages do not reach the output. This last type
of error is also an input-overrun error, and thus the IU_Input_Overrun(i) signal will be asserted at the time
to output the expected message. The value of signal IU_Input_Overrun(i) is valid when IU_receiving and
IU_Ready are asserted, and it is arbitrary for all other conditions.

The structural parameter Input_FIFO_Depth specifies the minimum size for each of the input buffers.
The actual buffer size is determined by the IU design and implementation. During a reception window,
the messages stored in an input buffer must not be overwritten. If an input buffer becomes full during a
reception window, the required IU response is to not load (i.e., to dump) any additional messages received
on the corresponding input channel until there is space available in the buffer. The only exception is
when there is a simultaneous reading of the buffer; in that case, the required response is to load the
received message. Dumped messages are not reflected in the IU_Message_Out, IU_Link_Error and
IU_Buffer_Overload signals. The reception of the dumped messages is always reflected in the
corresponding fields of the signals IU_Strobe_Out, IU_Imm_Link_Error and IU_Imm_Buffer_Overload
since there is no memory storage restriction associated with these signals. Note that a buffer overflow
condition can occur for every reception mode except when asynchronous-monitoring is active.

Figure A.19 shows as example of the generation of input-overload syndromes for the reception of two
synchronous-message streams. Three messages are expect during each window, and the maximum
expected load for the input buffer is two for both cases. For the first window, three messages are received
within the expected-reception interval for the first message. Message C triggers the buffer overload. This
is reported one tick later on signal IU_Imm_Buffer_Overload(i) and at the output time of the third
message on signal IU_Buffer_Overload(i). For the second window, four messages are received and
message D triggers the overload. This is reported one tick later on signal IU_Imm_Buffer_Overload(i),
but it is never reported on signal IU_Buffer_Overload(i) because the D message does not reach the
output. Nevertheless, IU_Buffer_Overrun(i) is asserted in this case.

219

Reception window Reception window

Wrev | DII , DI Wrev DII | DII

Clk

CM_Message_In(i) Al B} |C Al"[Bj |C{-|D -

CM_Strobe_In(i) []

IU_Message_Out(i) — Al [B] |C] A B[IC]--
TU_Strobe_Out(i) 11 M

IU_Receiving
[U_Ready 1 M EEEN

IU_Imm_Buffer_Overload(i) w0 I I 10 | -

IU_Buffer_Overload(i) —— | | | | -

IU_Buffer_Overrun(i) — | | | | -

Figure A.19: Generation of the input-overload syndromes for synchronous reception

A.5.6. IU_Frame_Sync_Error

The errors detected during the execution of the Frame Synchronization process are reported when the
process completes. Figure A.20 illustrates this. The set of syndrome bits is represented by character Z.
For this example, the gap timer is set to expire after six ticks. The IU_Frame_Sync_Error syndromes are
valid only when the Frame Synchronization process is complete, which is signaled by the third assertion
of IU_Ready in the PD_Sync_Cap minor mode. The value of IU_Frame_Sync_FError is arbitrary at all
other times.

220

Reception/Observation Gap timer expires and

Reception of a valid ECHO window process completes if no new
restarts the gap timer \ A / valid ECHOs are received
gap
Clk 1 1 1 11111111 1y
CM_Message_In(i) = [E —_

CM._Strobe_In(i)]

IU_Message_Out(i) — E] —

IU_Strobe_Out(i)

IU_Receiving —

IU_Ready

IU_Frame_Sync_Error ——

Figure A.20: Generation of the Frame Synchronization syndromes

A.6. Response to MCU commands

The IU reacts to nine different MCU commands. A node-reset command, indicated by asserting the
MCU_Node_Reset signal, requires the IU to immediately return to a default state independently of the
current activity or the value of other MCU command signals. This command may be issued at any time
and the IU must respond to it. The other commands relevant to the behavior of the IU are indicated by the
command signal MCU_Minor_Mode. The MCU will issue these commands only when the IU is idle and
ready to receive a command. The IU design is required to execute each MCU command independently,
and no assumption should be made about the sequence in which the commands are issued.

Note that the IU is required to begin every reception or observation window with empty input buffers.

A.6.1. Node_Reset

The IU is required to return to its default state at most two ticks after the MCU_Node_Reset signal is
asserted. The IU response includes setting its output signals to their default values as stated in Table A.2
and invalidating the current PE communication schedule. In its default state, the IU is idle and waiting
for a new command from the MCU.

Figure A.21 shows an example of a node-reset command. Note that IU_Strobe_Out must be returned

to its default value and held there while MCU_Node_Reset is asserted, and it is allowed to operate
normally afterwards.

221

Clk IIIIIIIIII=

CM_Strobe_In(i)

MCU_Node_Reset

IU_Receiving

IU_Ready

IU_Strobe_Out(i) —==]

Figure A.21: Response to MCU command: MCU_Node_Reset

A.6.2. Minor_Mode = Reset

The response of the IU to a Reset minor mode command is similar to the response to a node-reset
command, except that the IU must be in its default state one tick after the command is issued. Figure
A.22 shows an example of the required response. The “Reset” value of signal MCU_Minor_Mode is
represented here by the letter X.

Clk —L 1 1 111y

CM_Strobe_In(i) ——

MCU._Minor_Mode ==X -- <—X =Reset

MCU_Ready — L]

IU_Receiving

IU_Ready

IU_Strobe_Out(i) 1 [

Figure A.22: Response to MCU command: Minor_Mode = Reset

A.6.3. Minor_Mode = Collective_Diagnosis

For Collective Diagnosis the IU expects to receive messages during four separate synchronous-
reception windows. For each reception window, only one message is expected from each opposite-kind
node. The size of each reception window is given by parameter Syncns_Wnd_Sz. The delay from one
tick after MCU_Ready is asserted to the beginning of the first window is given by CD_Wnd1_Dly. The
time interval between windows is given by CD_Wnd2_Dly. Figure A.23 illustrates the IU response for
CD_Wndl_Dly = 3, CD_Wnd2_Dly = 2, and Syncns_Wnd_Sz = 4. The letter “X” on the
MCU_Minor_Mode waveform represents the “Collective_Diagnosis” value. The label RxWnd stands for
“Reception Window”. During the execution of this minor mode, the values of signals IU_PE_or_Acc,
IU_Source_Id, and TU_Last_Message are arbitrary.

222

Syncns_Wnd_Sz
CD_Wnd2_Dly

| \ RandI \ RxWnd | RxWnd | | RxWnd
| | I I
|

CD_Wndl_Dly

Clk — >
< X=
MCU_Minor_Mode ~—+1X — Collective_Diagnosis

MCU_Ready

IU_Receiving || | | | | |
TU_Ready 1 1]

Figure A.23: Response to MCU command: Minor_Mode = Collective_Diagnosis

A.6.4. Minor_Mode = Schedule_Update

For Schedule Update the IU expects to receive two synchronous-message streams from each opposite-
kind node. The number of messages in each stream is equal to the number of BIUs, which is denoted by
N and given by structural parameter Num_BIU. Each stream is received with separate reception windows
for each message or with a continuous reception window for the full stream. Parameter SU_Wnd2_Dly
specifies the duration of the time interval between expected-reception intervals for each message of a
stream. If SU_Wnd2_Dly = 0, then each stream is received with a continuous reception window.
Parameter SU_P1_Wnd1_Dly(MCU_Node_Kind), which is a function of the local node kind, specifies
the delay to the expected-reception interval for the first message of the first stream. Parameter
SU_P2_Wnd1_DIly(MCU_Node_Kind) specifies the duration of the time interval between the last
window for the first stream and the first window for the second stream. SU_DII specifies the DII for both
streams. Syncns_Wnd_Sz specifies the duration of the expected-reception interval for each message.
Parameter SU_Max_Buff_Cnt specifies the maximum number of messages that an input buffer is
expected to hold during a reception window, separate or continuous, under normal operation.

In addition to receiving the message streams, during the execution of this command the IU receives
the new schedule from the Route-and-Vote Unit (RVU) in the form of N consecutive messages
corresponding to the processing results for the messages of the second stream. No particular time delay
should be assumed between IU_Ready and RVU_Ready. After receiving the RVU results, the [U must
assess the new schedule and update the schedule assessment outputs. Parameter Max_Num_PE_Msg
specifies the maximum number of PE messages that can be scheduled. If the new schedule is invalid, a
default schedule is used in which each PE is allocated Dflt_Num_PE_Msg messages.

Figures A.24 illustrates the IU response for a system with 3 BIUs and the following reception
parameter values: SU_P1_Wnd1_DIly(MCU_Node_Kind) = 1, SU_P2_Wnd1_DIly(MCU_Node_Kind) =
2, Syncns_Wnd_Sz =3, SU_Wnd2_Dly = 1, and SU_DII = 4. The letter “X” on the MCU_Minor_Mode
signal waveform represents the “Schedule_Update” value of that signal. Note that I[U_Last_Message is
active in the execution. However, the values of signals IU_PE_or_Acc and IU_Source_Id are arbitrary.
Since separate reception windows are used for each message, SU_Max_Buff_Cnt = 1 in each case. The
new schedule is represented by values D, E, and F on signal RVU_Transform_Result. The worst-case
delay to generate the schedule assessment outputs measured with respect to the last assertion of
RVU_Ready is determined by the IU design. The values of IU_Zero_Schedule and IU_Invalid_Schedule

223

must be held constant until the Schedule_Update command is issued again.

SU_P2_Wnd1_DIly(MCU_Node_Kind)

SU_P1_WndIl_Dly(MCU_Node_Kind) Syncns_Wnd_Sz
\L' SU_DII SU_DII SU—W$2—DIY \L
I 1 |
RxWnd RxWnd RxWnd RxWnd RxWnd RxWnd
Clk 11 1 1 1 11 11 1 | AN I (Y Y (N Y [N [N (N [N [Y N AN (NN B | >
MCU_Minor_Mode — X] _
MCU_Ready u

IU_Receiving
IU_Ready | 1 |

TU_Last_Message — | [| —-

RVU_Transform_Result —— A B D E F -
RVU_Ready [] 1 [N]]
RVU_Last_Message — | | | | -
IU_Zero_Schedule —=-U [Y --
IU_Invalid_Schedule ——Y [Z"--
I

The worst-case schedule-assessment
delay is determined by IU design.

Figure A.24: Response to MCU command: Minor_Mode = Schedule_Update (separate reception windows)

Figures A.25 illustrates the response for continuous reception windows with SU_Wnd2_Dly = 0, and
SU_DII = 2. The other parameters have the same values as in Figure A.24.

224

Syncns_Wnd_Sz

SU_P2_Wnd1_Dly(MCU_Node_Kind
SU_P1_Wnd1_DIy(MCU_Node_Kind) RxWnd _P2_Wndl_DIly(MCU_Node_Kind)

ClkIIIIIII

MCU_Minor_Mode — X|

MCU_Ready 1

IU_Receiving
TU_Ready 1M1 M 1 [

IU_Last_Message —]] | |

RVU_Transform_Result — D{ [E| |F —=
RVU_Ready 1 O M

RVU_Last_Message — | [[] |] |

IU_Zero_Schedule ——-U [Y --

TU_Invalid_Schedule -

The worst-case schedule-assessment
delay is determined by the IU design.

Figure A.25: Response to MCU command: Minor_Mode = Schedule_Update (continuous reception windows)

A.6.5. Minor_Mode = PE_Communication

Irrespective of the schedule assessment results, the MCU will always issue a command to transition to
the PE Communication mode. The response of the IU depends on the value of signal
MCU_Schedule_Status. If MCU_Schedule_Status = Zero, the IU ignores the command and waits for the
next one. If MCU_Schedule_Status = Valid, the Ilatest loaded schedule is executed. If
MCU_Schedule_Status = Invalid, the default schedule is executed.

For MCU_Schedule_Status # Zero, the IU expects to receive from each opposite-kind source a
synchronous-message stream composed of the scheduled PE messages followed by a message for the
Accusation Exchange protocol. Parameter PE_Wnd2_Dly specifies the duration of the time interval
between the expected-reception intervals for each message. If PE_Wnd2_Dly = 0, then the stream is
received with a continuous reception window. Parameter PE_Wnd1_DIly(MCU_Node_Kind) specifies
the delay from one tick after the command is issued until the time at which the expected-reception
interval for the first message begins. Syncns_Wnd_Sz specifies the duration of the expected-reception
interval for each message. PE_DII specifies the data-introduction interval, which applies to all the
messages in the stream, including the Accusation Exchange protocol message at the trailing end.
Parameter PE_Max_Buff_Cnt specifies the maximum expected number of messages stored in each input
buffer during the reception windows.

Figure A.26 illustrates the IU response for a system with 4 BIUs and schedule {(1, 2),(3, 1),(4, 2)},

225

where for each (a,b) pair “a” specifies the PE source identification number and “b” specifies the number
of scheduled messages. The parameter values are as follows: PE_Wnd1_Dly(MCU_Node_Kind) = 1,
PE_Wnd2_Dly =1, Syncns_Wnd_Sz = 3, and PE_DII = 4. Since the messages are received with separate
reception windows, PE_Max_Buff Cnt = 1 for each window.

PE_Wnd1_Dly(MCU_Node_Kind) Syncns_Wnd_Sz
PE DII PE_Wnd2_Dly
——
RxWnd RxWnd RxWnd RxWnd RxWnd RxWnd
I e e I S o e B
Clk 1 l l l >
<X=
MCU_Minor_Mode —-XI -

PE_Communication

MCU_Ready]

IU_Receiving | | |

IU_Ready H B]
P=PE
IU_PE_or_Acc == P P P P P Al - < A=ACC
IU_Source_Id -~ 1 1 3 4 4 -

IU_Last_Message _~ [--

Figure A.26: Response to MCU command: Minor_Mode = PE_Communication (separate reception windows)

Figure A.27 illustrates the IU response with a continuous reception window. For this case,
PE_Wnd2_Dly =0, PE_DII = 2, and PE_Max_Buff_Cnt has a value larger than 1.

Syncns_Wnd_Sz

RxWnd
PE_Wnd1_Dly(MCU_Node_Kind) I |
PE_DII
—1 | \V | 1 1 | |
1 1 I) 1 I 1
Clk | N I Y [N A N B | | I N N [N A N B | >
o - < X =
MCU_Minor_Mode X] PE_Communication
MCU_Ready ||
IU_Receiving | |
IU_Ready 1M M
P=PE
IU_PE_or_Acc - Pl PT [PT PT PT AT -- < A - acC
IU_Source_Id = 1Bl falral -
IU_Last_Message __ I I s

Figure A.27: Response to MCU command: Minor_Mode = PE_Communication (continuous reception window)

226

A.6.6. Minor_Mode = Sync_Preservation

For this mode the IU expects to receive INIT and ECHO synchronization messages from each
opposite-kind source in two separate reception windows. Fixed-delay reception is used in each case.
Each window is characterized by delay and size parameters. Figure A.28 illustrates the IU response. For
the INIT window, parameter SP_INIT_Wnd_Dly(MCU_Node_Kind) specifies the delay to the expected-
reception interval with respect to the time one tick after the MCU command is issued, and parameter
SP_INIT_Wnd_Sz(MCU_Node_Kind) specifies the duration of the reception interval. For the ECHO
window, parameter SP_ECHO_Wnd_Dly(MCU_Node_Kind) specifies the delay to the expected-
reception interval with respect to the time one tick after the RVU_Accept_INIT is asserted, and parameter
SP_ECHO_Wnd_Sz(MCU_Node_Kind) specifies the duration of the reception interval. Note that the
RVU_Accept_INIT is monitored only after the IU_Ready signal is asserted.

SP_INIT_Wnd_Sz(MCU_Node_Kind) SP_ECHO_Wnd_Dly(MCU_Node_Kind)
SP_INIT_Wnd_Dly(MCU_Node_Kind) \l/ SP_ECHO_Wnd_Sz(MCU_Node_Kind)
\l/ RxWnd | | RxWnd
Clk 1 1 1 11 11 1 11 1 : 11 : 1 1 1 : 11 >
i - < X=
MCU_Minor_Mode X| Sync_Preservation
MCU_Ready
IU_Receiving] —l
IU_Ready []
RVU_Accept_INIT == | -

Figure A.28: Response to MCU command: Minor_Mode = Sync_Preservation

A.6.7. Minor_Mode = Self Test

This version of the RPP does not require the implementation of a self-test. When the MCU issues this
command, the IU simply ignores it and waits for the next command.

A.6.8. Minor_Mode = PD_Sync_Capture

This command corresponds to the Local Diagnosis Acquisition and Synchronization Acquisition
modes executed consecutively. Figure A.29 illustrates the IU response for this command. The IU
supports two activity threads in this mode. The first activity thread consists of four steps: measuring two
consecutive time intervals, executing the Frame Synchronization protocol, and then enabling fixed-delay
reception for ECHO messages. This first thread defines a continuous observation window composed of
four intervals corresponding to the four steps. The second activity thread runs in parallel with the first
one and consists of performing asynchronous-monitoring reception for each input channel during the full
duration of the observation window defined by the first thread.

Starting one tick after the MCU command is issued, the IU measures two consecutive observation

227

intervals, the first one of duration PD_Rdyl_Dly and the second one of duration PD_Rdy2_Dly.
IU_Ready signals the completion of the intervals. The Frame Synchronization (FS) process is enabled
upon completion of the second interval. When the FS process is complete, the Synchronization Capture
interval begins, during which fixed-delay reception for ECHO messages is performed. The observation
window is closed when the RVU_Accept_ ECHO signal is asserted.

Frame Synchronization
Synchronization Capture

PD_R(ilil_Dly H PDRc\lliZDlyC\:i% ?C:E % I

| Observation Window |

Clk ——1 111 A|I >

II|IIIIIIIIIII
I

s~
T 7
e
T
—~l
b e,
L
T

|

|

MCU_Minor_Mode

MCU_Ready

il
T T
Ll
T T
il

Ll
T T

IU_Receiving |

—_——
1
-\I_ T T T T

/| /| jLm
IDU_Ready ==] i 1] .
RVU_Accept_ECHO = /| | [] -

1. FS process enabled

2. When IDU_Ready is asserted, FS process loads the initial eligible sources and enables the gap timer
3. Gap timer expires and FS process completes if no new valid ECHOs are received

4. Fixed-delay reception for ECHO messages enabled

5. RVU_Accept_ECHO triggers end of observation window

Figure A.29: Response to MCU command: Minor_Mode = PD_Sync_Capture

A.6.9. Minor_Mode = ID_Initial_Sync

This command triggers the execution of Initial Diagnosis followed by Initial Synchronization. Figure
A.30 illustrates the IU response. For Initial Diagnosis, the IU performs synchronous reception with one
expected message from each opposite-kind source. Parameter ID_Wnd_Dly specifies the delay from one
tick after the MCU command is issued until the beginning of the expected-reception interval. Parameter
ID_Wnd_Sz specifies the duration of the reception window. After the closing of the Initial Diagnosis
window, the IU waits for IS_Wnd_Dly to enable fixed-delay reception for the INIT and ECHO messages
of the Initial Synchronization protocol. Simultaneously, the IU performs asynchronous-monitoring
reception. The observation window closes when RVU_Accept_ECHO is asserted.

228

RVU_Accept_ECHO

triggers the end of the
ID_Wnd_Dly ID_Wnd_Sz IS_Wnd_Dly observation window

2 v 2 v

Observation Window |
| I I N [N Y AN N | | | I II | 11 : 1 1
11 g

/ =
/
Y

Clk —L1L 1 1+ 111111

e
T "7

MCU_Minor_Mode

MCU_Ready

1l
T T

IU_Receiving

—~
~_—

/| |

IU_Ready

1
_——
—_—
.—
|
|

RVU_Accept ECHO =

Figure A.30: Response to MCU command: Minor_Mode = ID_Initial_Sync

A.7. Required parameters
This section lists the required structural and behavioral parameters for the Input Unit. All the
parameters are of type Natural. The values of these parameters are set prior to simulation and synthesis,

and they remain fixed afterwards.

Additional parameters may be identified during the IU design process.

A.7.1. Structural parameters

Table A.3: Required structural parameters

Description Parameter Label Allowed Value | Typical Value
Range
Number of BIUs (= N) Num_BIU >1 3
Number of opposite-kind nodes (= Q) Num_OK >1 3
Number of syndromes from each link receiver (= L) Num_Link_Synd >1 1
Minimum size of the input buffers Input_FIFO_Depth 21 9

A.7.2. Behavioral parameters

Table A.4 lists the IU behavioral parameters. Some parameters are a function of the node kind
specified by the MCU_Node_Kind signal. All the behavioral parameters have units of local clock ticks.

229

Table A.4: Required behavioral parameters

Description Parameter Label Allowed Typical
Value Range Value
First IU_Ready delay for Local PD_Rdyl_Dly >1 5001
Diagnosis Acquisition
Second IU_Ready delay for Local PD_Rdy2_Dly >1 5001
Diagnosis Acquisition
Window delay for Initial Diagnosis ID_Wnd_Dly >0 0
Window size for Initial Diagnosis ID_Wnd_Sz > 50000
Window delay for Initial IS_Wnd_Dly > 3
Synchronization
INIT window delay for Synchronization SP_INIT_Wnd_Dly(Node_Kind) >0 RMU: 3
Preservation BIU: 20
INIT window size for Synchronization SP_INIT_Wnd_Sz(Node_Kind) >1 RMU: 7
Preservation BIU: 9
ECHO window delay for SP_ECHO_Wnd_Dly(Node_Kind) >0 RMU: 22
Synchronization Preservation BIU: 23
ECHO window size for Synchronization SP_ECHO_Wnd_Sz(Node_Kind) >1 RMU: 9
Preservation BIU: 7
Delay for INIT pulses INIT_PIs_Dly(Node_Kind) >1 RMU: 8
BIU: 10
Width parameter for INIT pulses INIT_Skw(Node_Kind) >1 RMU: 3
BIU: 4
Delay for ECHO pulses ECHO_PIs_Dly(Node_Kind) >1 RMU: 10
BIU: 8
Width parameter for ECHO pulses ECHO_Skw(Node_Kind) >1 RMU: 3
BIU: 3
First window delay for Collective CD_Wndl1_Dly >0 4
Diagnosis
Delay between the windows for CD_Wnd2_Dly >1 5
Collective Diagnosis
First window delay for the first message SU_P1_Wnd1_Dly(Node_Kind) >0 RMU: 3
stream in Schedule Update BIU: 15
First window delay for the second SU_P2_Wnd1_Dly(Node_Kind) >1 RMU: 15
message stream in Schedule Update BIU: 16
Delay between expected-reception SU_Wnd2_Dly >0 0
intervals for the first and second
message streams in Schedule Update
Data introduction interval for the first SU_DII >1 2
and second message streams in
Schedule Update
Maximum expected input buffer load SU_Max_Buff Cnt >1 4
for the first and second message stream
in Schedule Update
Maximum number of PE messages that Max_Num_PE_Msg >1 4645
can be processed during PE
Communication minor mode
Number of PE messages per PE for the Dflt_Num_PE_Msg >1 50
default communication schedule
First window delay for the message PE_Wnd1_Dly(Node_Kind) >0 RMU: 4
stream in PE Communication BIU: 16

230

Description Parameter Label Allowed Typical
Value Range Value

Delay between expected-reception PE_Wnd2_Dly >0 0
intervals for the message stream in PE
Communication
Data introduction interval for the PE _DII >1 2
message stream in PE Communication
Maximum expected input buffer load PE_Max_Buff Cnt >1 4
for the message stream in PE
Communication
Size of expected-reception interval for Syncns_Wnd_Sz >1 7
synchronous messages (Does not apply
to Initial Diagnosis messages)
Gap timer timeout for Frame Frm_Sync_Gap(Node_Kind) >1 RMU: 3
Synchronization BIU: 3

A.8. Additional remarks

This section presents various miscellaneous requirements and remarks not presented elsewhere in the

document.

A.8.1. Required registered outputs

The IU is the first processing stage of the RPP for received messages. Its outputs are read directly by
the MCU, IDU, and NDU units. To prevent excessive CLK-to-IU-output latency, which could have a
strong negative impact on the overall processing performance of the RPP, the following IU outputs are

required to be registered (i.e., to be the direct output of a flip-flop, register, or memory element):

e [U_Message Out
e [U_Strobe_Out

e [U_Receiving

e JU_Ready

e [U_Source_Id

e JU_PE_or_ACC

e [U_Last_Message

e [U_Unexpected_Message
e [U_Link_Error

e [U_Imm_Link_Error

e [U_Empty_Buffer

e [U_Buffer_Overload

e [U_Imm_Buffer_Overload

¢ [U_Input_Overrun

231

A.8.2. Relevant parameter relations

The following relations are satisfied for the current design of the RPP.

INIT_PIs_Dly(Node_Kind) > SP_INIT_Wnd_Sz(Node_Kind)
ECHO_PIs_Dly(Node_Kind) > SP_ECHO_Wnd_Sz(Node_Kind)
INIT_Skw(Node_Kind) < SP_INIT_Wnd_Sz(Node_Kind)
ECHO_Skw(Node_Kind) < SP_ECHO_Wnd_Sz(Node_Kind)
Frm_Sync_Gap(Node_Kind) = ECHO_Skw(Node_Kind)
SU_DII =2

PE_DII > 2

SU_Max_Buff_Cnt = 1 for SU_Wnd2_Dly > 1
PE_Max_Buff_Cnt =1 for PE_Wnd2_Dly > 1
SU_Max_Buff _Cnt < Syncns_Wnd_Sz

PE_Max_Buff_Cnt < Syncns_Wnd_Sz

Input_FIFO_Depth > max(SU_Max_Buff_Cnt, PE_Max_Buff Cnt) + 1

232

(A.15)
(A.16)
(A.17)
(A.18)
(A.19)
(A.20)
(A21)
(A.22)
(A.23)
(A.24)
(A.25)

(A.26)

References

[De Micheli 94]

[Torres 05]

[XAPPO77]

[XILINX 05]

De Micheli, Giovanni: Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

Torres-Pomales, Wilfredo; Malekpour, Mahyar; and Miner, Paul S.: ROBUS-2: A
Fault-Tolerant Broadcast Communication System. NASA TM-2005-
213540, 2005.

Xilinx Application Note XAPPO77: Metastability Considerations. version 1.0,
Xilinx Corporation, January 1997.

Virtex-1I Platform FPGAs: Complete Data Sheet. Xilinx Corporation, March 2005.

233

REPORT DOCUMENTATION PAGE oryorm Approved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) [2. REPORT TYPE 3. DATES COVERED (From - To)
01- 11 - 2005 Technical Memorandum

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Design of the Protocol Processor for the ROBUS-2 Communication

System 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; and Miner, Paul S.

5e. TASK NUMBER

5f. WORK UNIT NUMBER
23-063-30-RF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-2199

L-19188
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration NASA

Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2005-213934

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 62

Availability: NASA CASI (301) 621-0390

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

14. ABSTRACT

The ROBUS-2 Protocol Processor (RPP) is a custom-designed hardware component i mplementing the functionality of the ROBUS-2 fault-tolerant
communication system. The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor-Independent Design for Enhanced
Reliability (SPIDER), a general-purpose fault tolerant integrated modular architecture currently under development at NASA Langley Research Center.
ROBUS is atime-division multiple access (TDMA) broadcast communication system with medium access control by means of time-indexed communication
schedule. ROBUS-2 is a developmental version of the ROBUS providing guaranteed fault-tolerant services to the attached processing elements (PEs), in the
presence of a bounded number of faults. These services include message broadcast (Byzantine Agreement), dynamic communication schedul e update, time
reference (clock synchronization), and distributed diagnosis (group membership). ROBUS also features fault-tolerant startup and restart capabilities.
ROBUS-2 tolerates internal aswell as PE faults, and incorporates a dynamic self-reconfiguration capability driven by the internal diagnostic system. ROBUS
consists of RPPs connected to each other by alower-level physical communication network. The RPP has a pipelined architecture and the designis
parameterized in the behavioral and structural domains. The design of the RPP enables the bus to achieve a PE-message throughput that approaches the
available bandwidth at the physical layer.

15. SUBJECT TERMS
Fault tolerance; Broadcast communication; Integrated Modular Architecture; Avionics buses

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT |b. ABSTRACT |c. THIS PAGE PAGES STl Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U uu 252 (301) 621-0390

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

